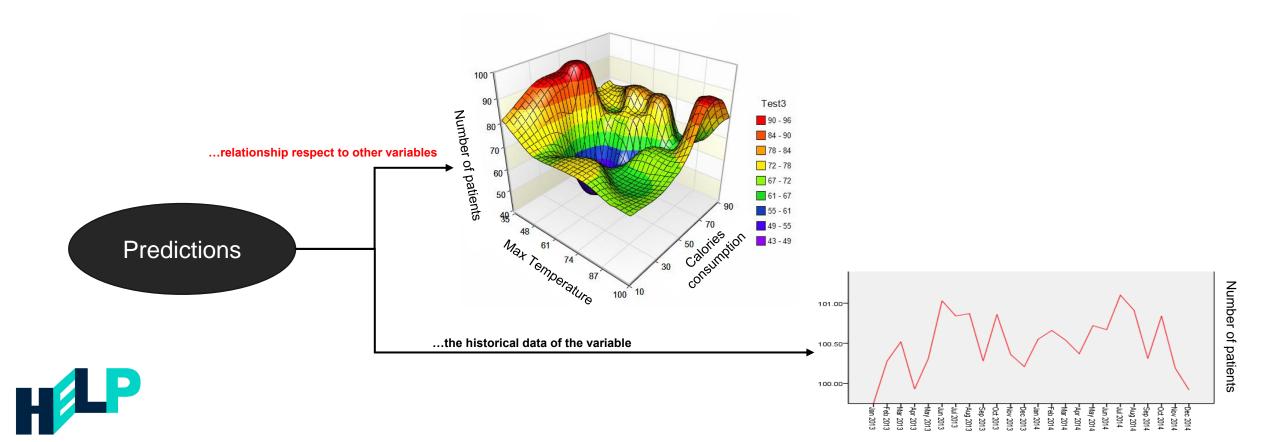


Forecasting in HCSC

Type of preditions



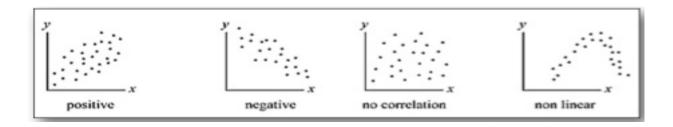
Formulating relationship between decision variables

Bivariate Analysis

 Pearson r Coefficient: measure the strength of the linear association between continuous variables.

Correlation Coefficient (r)

- Spearman rho Coefficient: is used to estimate the degree of association between two ordinal variables measuring the concordance or discordance.
- Kendall Coefficient: measures the strength of dependence between two nominal variables with same scale.



Correlation coefficient varies from -1 (Negative Correlation) to +1 (Positive Correlation) If Correlation coefficient is 0, there is NO Correlation or association

Bivariate Analysis

• Pearson r Coefficient: measure the strength of the linear association between continuous variables.

Correlation Coefficient (r)

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})}}$$

Example in Excel...(Pills consumption_dataset)

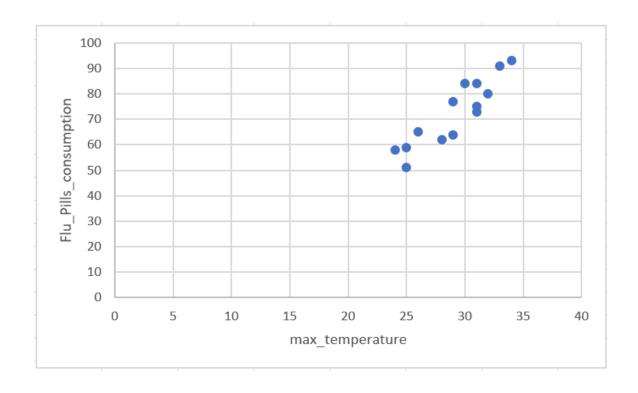
Correlation coefficient varies from -1 (Negative Correlation) to +1 (Positive Correlation) If Correlation coefficient is 0, there is NO Correlation or association

Y

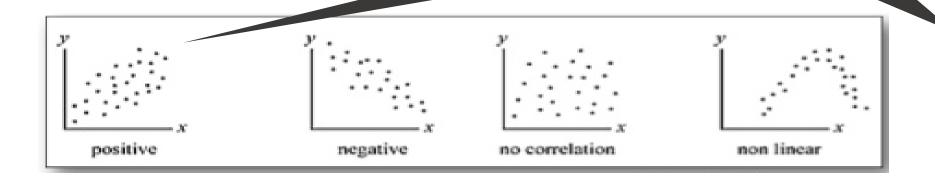
Response variable or dependent variable

Max-Temperature	Pill-consumption
29	77
28	62
34	93
31	84
25	59
29	64
32	80
31	75
24	58
33	91
25	51
31	73
26	65
30	84
	29 28 34 31 25 29 32 31 24 33 25 31 26

People will take more flu pills when the temperature growths?



Strong a positive relationship

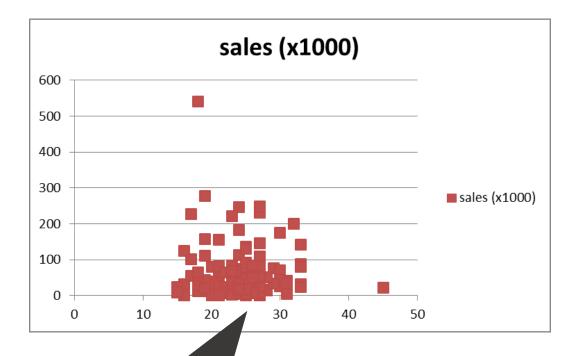


REAL STATISTICS Add ins...

Correlation Coefficients					
Pearson	0.906923				
Spearman	0.892594				
Kendall	0.76156				
Pearson's	coeff (t tes	t)			
Alpha	0.05				
Tails	2				
corr	0.906923				
std err	0.121618				
t	7.457156				
p-value	7.66E-06				
lower	0.641941				
upper	1.171905				

sales (x1000)	Fuel efficiency
16.919	28
39.384	25
14.114	26
8.588	22
20.397	27
18.78	22
1.38	21
19.747	26
9.231	24
17.527	25
91.561	25
39.35	23
27.851	24
83.257	25

	sales (x1000)	Fuel efficiency
sales (x1000)	1	
Fuel efficiency	-0.011575691	1



Is there any clear relationship...?

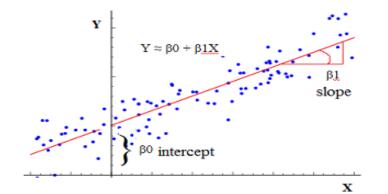
Regression analysis...

Multivariate Analysis

• Linear Regression: establishes a relationship between dependent variable and one or more independent variables using a best fit straight line (continuous).

Regression Analysis

- Logistics Regression: explain the relationship between dependent binary variable and one or more (continuous) independent variables.
- Nonlinear Regression: the relationship between the dependent and independent parameters are not linear.
- Ordinal Regression: explains the relationship between a dependent variable and independent variables (ordinal).

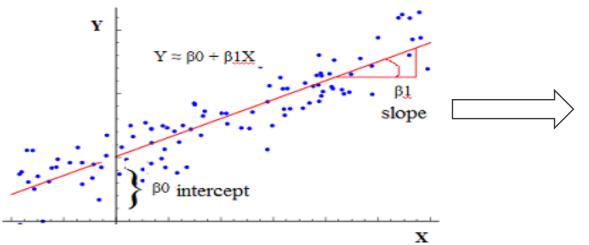


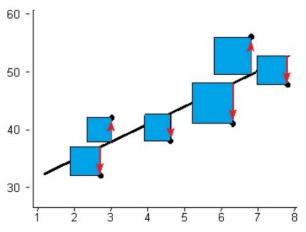
Y= dependent variable

 $\beta_0 = Y \text{ intercept}$

ß₁ = slope coefficient

X= independent variable





Least-squares method

$$Y = \beta_0 + \beta_1 X$$

Regression equation (useful for predictions)

Y

Response variable or dependent variable

Date	Max-Temperature	Pill-consumption
22/06/2017	29	77
23/06/2017	28	62
24/06/2017	34	93
25/06/2017	31	84
26/06/2017	25	59
27/06/2017	29	64
28/06/2017	32	80
29/06/2017	31	75
30/06/2017	24	58
01/07/2017	33	91
02/07/2017	25	51
03/07/2017	31	73
04/07/2017	26	65
05/07/2017	30	84

People will take more flu pills when the temperature growths?

Let's find the regression equation...predictions...

SUMMARY OUTPUT	
Regres	sion Statistics
Multiple R	0.906922978
R Square	0.822509288
Adjusted R Square	0.807718395
Standard Error	5.708824352
Observations	14

Strong and positive relationship...

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	1812.340466	1812.340466	55.60917	7.66141E-06
Residual	12	391.0881057	32.59067548		
Total	13	2203.428571			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-36.36123348	14.68726709	-2.475697709	0.029187	-68.36203945	-4.360427513	-68.36203945	-4.360427513
Max-Temperature	3.737885463	0.501248143	7.457155732	7.66E-06	2.645759578	4.830011347	2.645759578	4.830011347

SUMMARY OUTPUT	
Reares	sion Statistics
Multiple R	0.906922978
R Square	0.822509288
Adjusted R Square	0.807718395
Standard Error	5.708824352
Observations	14

H0: $Y = \beta_0 + \beta_1 X ... \beta_1 \approx 0$ H1: $Y = \beta_0 + \beta_1 X ... \beta_1 \neq 0$

Result: Reject H0...regression is SIG

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	1812.340466	1812.340466	55.60917	7.66141E-06
Residual	12	391.0881057	32.59067548		
Total	13	2203.428571			

Rule:

If p-value <= Alpha (α) Then Reject H0 Else Accept H0

Coefficients Lower 95% Upper 95% Lower 95.0% Standard Error P-value Upper 95.0% t Stat Intercept -36.36123348 -2.475697709 0.029187 -68.36203945 -4.360427513 -68.36203945 -4.360427513 14.68726709 Max-Temperature 3.737885463 0.501248143 7.457155732 7.66E-06 2.645759578 4.830011347 2.645759578 4.830011347

SUMMARY OUTPUT	
Regres	ssion Statistics
Multiple R	0.906922978
R Square	0.822509288
Adjusted R Square	0.807718395
Standard Error	5.708824352
Observations	14

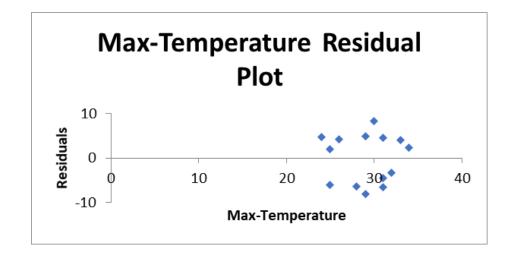
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	1812.340466	1812.340466	55.60917	7.66141E-06
Residual	12	391.0881057	32.59067548		
Total	13	2203.428571			

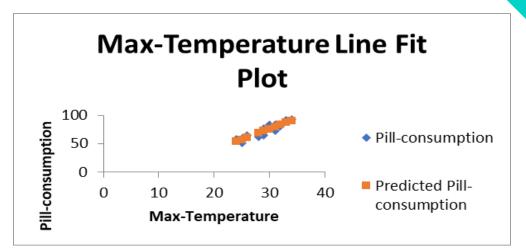
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-36.36123348	14.68726709	-2.475697709	0.029187	-68.36203945	-4.360427513	-68.36203945	-4.360427513
Max-Temperature	3.737885463	0.501248143	7.457155732	7.66E-06	2.645759578	4.830011347	2.645759578	4.830011347

Equation: Y = -36.3612 + 3.7379X

Both coefficients contribute significantly to explain the Y's variability

Residual graphs

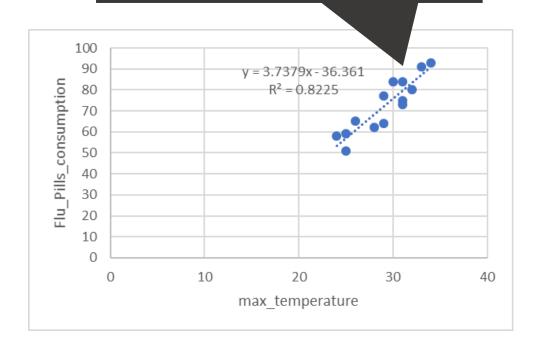




- ☐ Linear relationship
- ☐ Y ~ Normal Distribution
- □ No-autocorrelation (residuals)

- ☐ Linear relationship (OK)
- ☐ Y ~ Normal Distribution
- □ No-autocorrelation (residuals)

Clear linear relationship...



- ☐ Linear relationship (OK)
- ☐ Y ~ Normal Distribution (OK)
- No-autocorrelation (residuals)

Anderson	-Darling Te	st		
Alpha	0.05		mean	72.57143
Distrib	Normal		std dev	12.54543
Method	MLE			
AD stat	0.284238			
p-value	0.630726			
crit value	0.705319			

Anderson-Darling Test:

H0: the observed variable fits to a Normal Distribution H1: the observed variable does not fit to a Normal Distribution

P-value > 0.05 (user-defined parameter) ...Then Accept H0 (the dependent variable follows a Normal Distribution)

- ☐ Linear relationship (OK)
- ☐ Y ~ Normal Distribution (OK)
- □ No-autocorrelation (residuals) (OK)

Durbin-Watson Test				
Alpha	0.05			
D-stat	1.668617028			
D-lower	1.04495			
D-upper	1.35027			
sig	no			

The assumption is met

No auto-correlation (residuals)

$$d = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

Multiple regression...

Multiple regression:

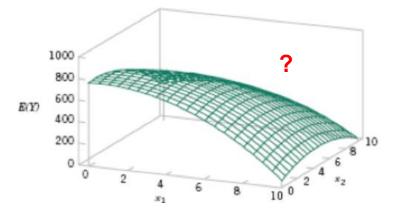
Model:
$$Y = \beta X + \varepsilon$$

240
200
160
E(Y) 120
80
40
0 2 4 6 8 10 0 2 4
$$x_2$$

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ \vdots \\ Y_n \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1b} \\ 1 & X_{21} & X_{22} & \dots & X_{2b} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix}$$

$$\mathcal{E} = \begin{bmatrix} eta_0 \\ eta_1 \\ \vdots \\ eta_h \end{bmatrix} \qquad \mathcal{E} = \begin{bmatrix} eta_1 \\ eta_2 \\ \vdots \\ eta_{n-1} \end{bmatrix}$$



Multiple regression:

Model:
$$Y = \beta X + \varepsilon$$

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1b} \\ 1 & X_{21} & X_{22} & \dots & X_{2b} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_b \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

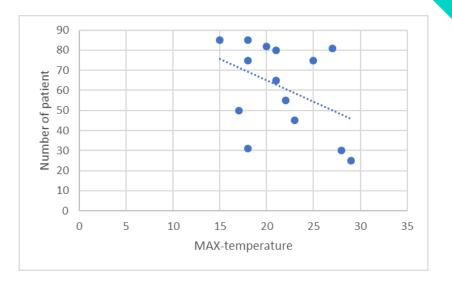
$$\hat{Y} = X\hat{\beta}$$

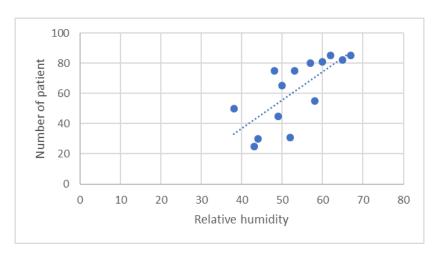
Seeking the coefficients...

- ☐ Linear relationship
- ☐ Y ~ Normal Distribution
- ☐ No multicollinearity in the data (X-matrix)
- ☐ Homoscedasticity (X-matrix)
- ☐ No-autocorrelation (residuals normality as well)

Relative humidity (%)	MAX-temperature	Number of patient
50	21	65
49	23	45
57	21	80
67	18	85
44	28	30
38	17	50
53	25	75
48	18	75
65	20	82
62	15	85
60	27	81
43	29	25
52	18	31
58	22	55

Linear relationship...





Relative humidity (%)	MAX-temperature	Number of patient
50	21	65
49	23	45
57	21	80
67	18	85
44	28	30
38	17	50
53	25	75
48	18	75
65	20	82
62	15	85
60	27	81
43	29	25
52	18	31
58	22	55

Linear relationship...

	Relative humidity (%)	MAX-temperature	Number of patient
Relative humidity (%)	1		
MAX-temperature	-0.279773528	1	
Number of patient	0.729161317	-0.415529852	1

- ☐ Linear relationship
- \square Y ~ Normal Distribution (YES--- α = 0.01)
- ☐ No multicollinearity in the data (X-matrix)
- ☐ Homoscedasticity (X-matrix)
- ☐ No-autocorrelation (residuals normality as well)

Anderson-Darling Te				
0.05				
Normal				
MLE				
0.796617				
0.039071				
0.705319				
	0.05 Normal MLE 0.796617 0.039071			

- ☐ Linear relationship
- ☐ Y ~ Normal Distribution
- ☐ No multicollinearity in the data (X-matrix)
- ☐ Homoscedasticity (X-matrix)
- ☐ No-autocorrelation (residuals normality as well)

Correlation Coefficient	ts			
Pearson	-0.279773528	_		
Spearman	-0.24751759			
Kendall	-0.191059483			
Pearson's coeff (t test)			Pearson's	coeff (Fisher)
Alpha	0.05		Rho	0
Tails	2		Alpha	0.05
			Tails	2
corr	-0.279773528			
std err	0.277147189		corr	-0.27977
t	-1.009476334		std err	0.27735
p-value	0.332668518		Z	-0.95332
lower	-0.88362538		p-value	0.340429
upper	0.324078323		lower	-0.70561
			upper	0.294526

No significant correlation between independent variables...OK

Assumptions	(multiple-reg.)) :
-------------	-----------------	------------

□ Linear r	elationship
------------	-------------

- ☐ Y ~ Normal Distribution
- ☐ No multicollinearity in the data (X-matrix)
- □ Homoscedasticity (X-matrix)
- ☐ No-autocorrelation (residuals normality as well)

Relative humidity (%) MAX-temperature 21.57142857 Mean 53.28571429 Variance 74.37362637 18.87912088 Observations 14 14 df 13 3.939464494 P(F<=f) one-tail 0.00963441 F Critical one-tail 3.905204358

F-Test Two-Sample for Variances

The variance are significantly different...

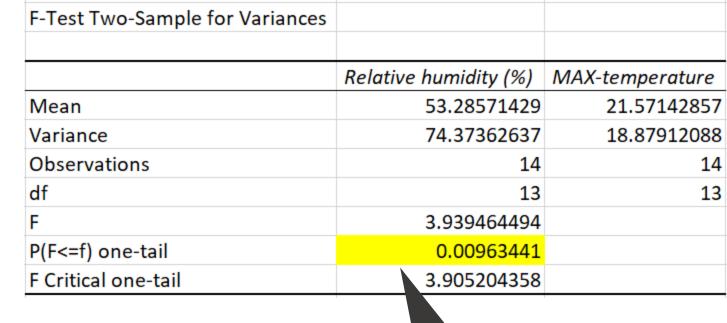
lationship
lationship

☐ Y ~ Normal Distribution

☐ No multicollinearity in the data (X-matrix)

☐ Homoscedasticity (X-matrix)

☐ No-autocorrelation (residuals – normality as well)



The variance are significantly different...

Z-score transformation = $(x - \mu) / \sigma$

- ☐ Homoscedasticity (X-matrix)
- ☐ No-autocorrelation (residuals normality as well)

score
MAX-temperature
-0.131513722
0.328784304
-0.131513722
-0.82196076
1.479529368
-1.052109773
0.78908233
-0.82196076
-0.361662734
-1.512407799
1.249380355
1.709678381
-0.82196076
0.098635291

☐ Homoscedasticity (X-matrix)

Variance are now equal...OK

☐ No-autocorrelation (residuals – normality as well)

F-Test Two-Sample for Variances		
	Relative humidity (%)	//AX-temperature
Mean	1.03092E-16	-3.39015E-16
Variance	1	1
Observations	14	14
df	13	13
F	1	
P(F<=f) one-tail	0.5	
F Critical one-tail	0.256068546	

		1 4 1	
	Linaar	relation	chin
	ı ııı c aı	TEIAIIOI	151111
_		10101	. Op

☐ Y ~ Normal Distribution

☐ No multicollinearity in the data (X-matrix)

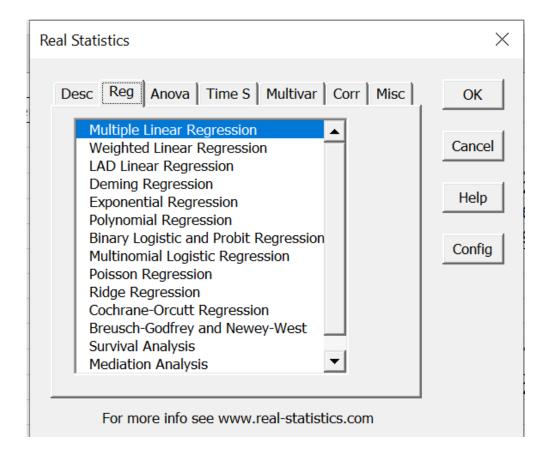
☐ Homoscedasticity (X-matrix)

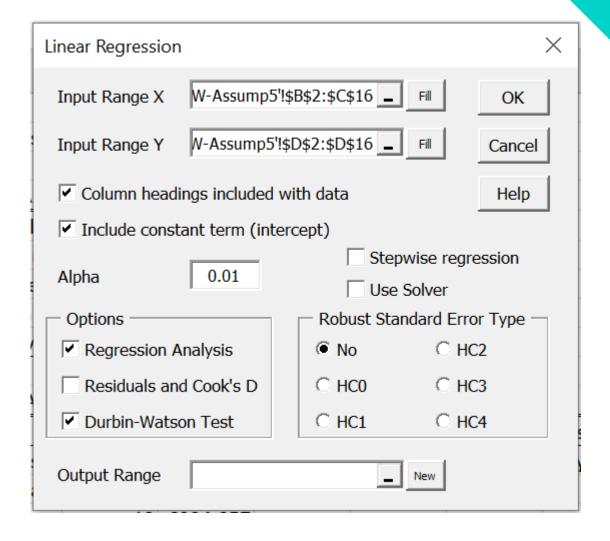
■ No-autocorrelation (residuals)

Durbin-Watson Test				
Alpha	0.05			
D-stat	1.230658			
D-lower	0.90544			
D-upper	1.55066			
sig	unclear			

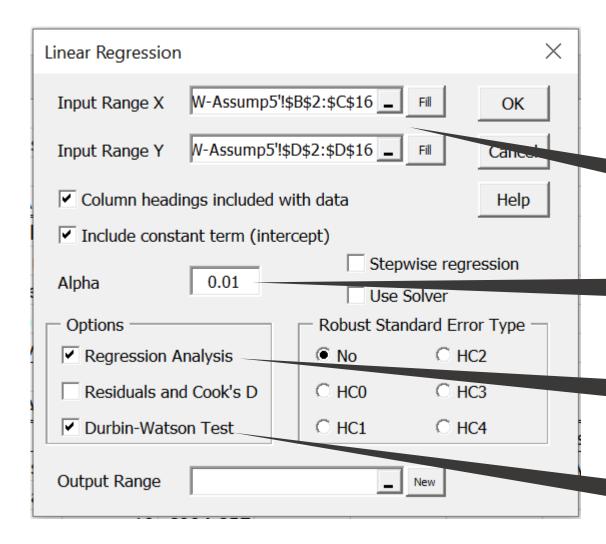
You might assume that is OK...

multiple-reg (REAL STATS-Add ins):





multiple-reg:



Setting the Xs and Y

Setting the confidence level of the regression analysis

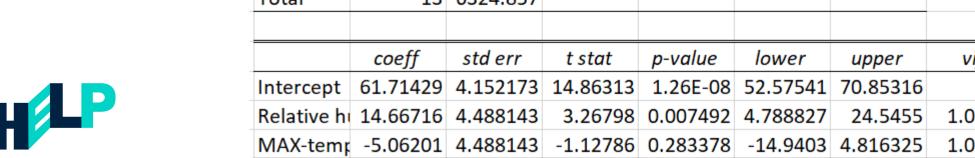
Run the whole Regression Analysis

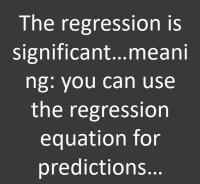
Auto-correlation analysis...

multiple-reg:

The two independent variables explain 76% of the variance in the dependent variable

Regression	Analysis							
OVERALL F	IT							
Multiple R	0.761722		AIC	79.43222				-
R Square	0.580221		AICc	83.87667	TI.			
Adjusted F	0.503897		SBC	81.3494	The regression equation presents a standard error of 16 patients			
Standard I	15.53601					standard 6	error of 16	patients
Observation	14							
ANOVA				Alpha	0.05			The regres
	df	SS	MS	F	p-value	sig		significant
Regression	2	3669.814	1834.907	7.602127	0.008445	yes		ng: you ca
Residual	11	2655.043	241.3676					the regre
Total	13	6324.857						equatior predictio
								predictio
	coeff	std err	t stat	p-value	lower	upper	vif	
Intercept	61.71429	4.152173	14.86313	1.26E-08	52.57541	70.85316		
Relative h	14.66716	4.488143	3.26798	0.007492	4.788827	24.5455	1.08492	
MAX-temp	-5.06201	4.488143	-1.12786	0.283378	-14.9403	4.816325	1.08492	





Regression	n Analysis						
OVERALL F	:IT						
Multiple R			AIC	79.43222			
R Square	0.580221		AICc	83.87667			
Adjusted F	0.503897		SBC	81.3494			
Standard I	15.53601						
Observation	14						
ANOVA				Alpha	0.05		
	df	SS	MS	F	p-value	sig	
Regression	2	3669.814	1834.907	7.602127	0.008445	yes	
Residual	11	2655.043	241.3676				
Total	13	6324.857					
	coeff	std err	t stat	p-value	lowe.	per	vif
Intercept	61.71429	4.152173	14.86313	1.26E-08	52.5,541	70.85316	
Relative h	14.66716	4.488143	3.26798	0.007492	4.788827	24.5455	1.08492
MAX-temp	-5.06201	4.488143	-1.12786	0.283378	-14.9403	4.816325	1.08492

Only the intercept and the relative humidity have a significant influence on the number of patients...

Equation (daily):

Number of patients = 61.7 + 12.67*RelHumi – 5.1*MAX-temp

Regression	Analysis						
OVERALL F	IT						
Multiple R	0.761722		AIC				
R Square	0.580221		AICc	67كر			
Adjusted F	0.503897		SBC	.3494			
Standard I	15.53601						
Observation	14						
ANOVA				Alpha	0.05		
	df	SS	MS	F	p-value	sig	
Regressior	2	3669	1834.907	7.602127	0.008445	yes	
Residual	11	26 ['] J43	241.3676				
Total	13	6 4.857					
	coeff	std err	t stat	p-value	lower	upper	vif
Intercept	61.71429	4.152173	14.86313	1.26E-08	52.57541	70.85316	,
Relative h	14.66716	4.488143	3.26798	0.007492	4.788827	24.5455	1.08492
MAX-temp	-5.06201	4.488143	-1.12786	0.283378	-14.9403	4.816325	1.08492

Equation (daily):

Number of patients = 61.7 + 12.67*RelHumi – 5.1*MAX-temp

<u>IMPORTANT:</u> This equation works only with z-scores of independent variables...

	Relative humidity (%)	MAX-temperature
Mean	53.28571429	21.57142857
Variance	74.37362637	18.87912088

Equation (daily):

Number of patients = 61.7 + 12.67*RelHumi – 5.1*MAX-temp

<u>IMPORTANT:</u> This equation works only with z-scores of independent variables...

$$Z_{revHum} = \frac{50 - 53.29}{\sqrt{74.37}} = -0.4$$

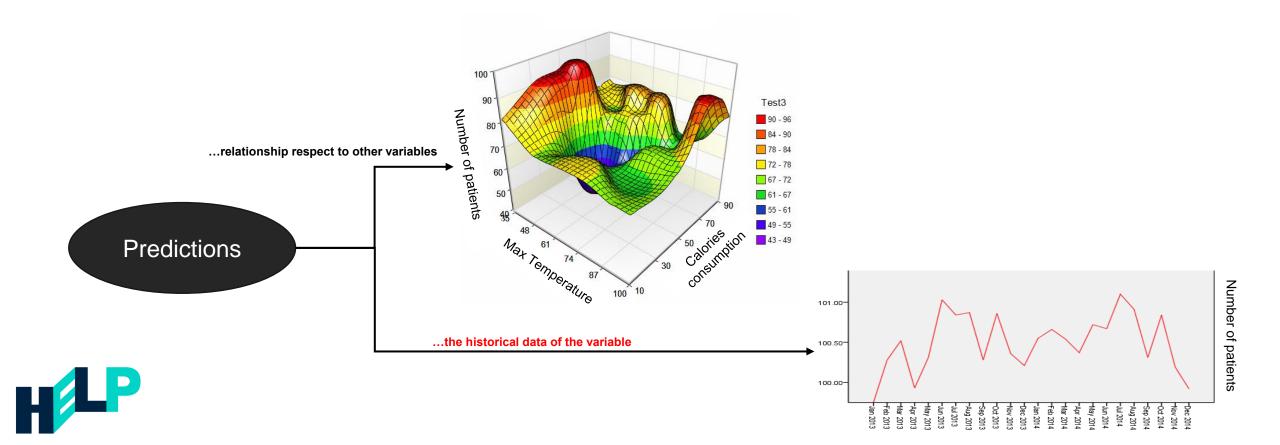
$$Z_{maxTem} = \frac{25 - 21.57}{\sqrt{18.88}} = 0.79$$

Prediction example...predict the number of patients in a day where the maximum temperature was 25 Celsius and we had 50% relative humidity...

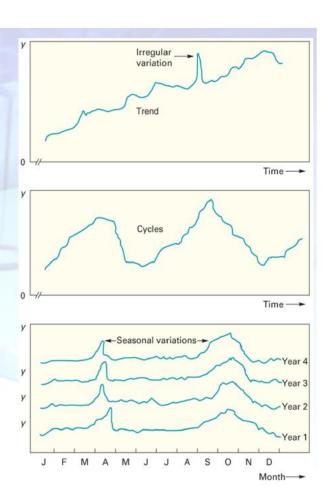
Z-score transformation = $(x - \mu) / \sigma$

Time series analysis...

Type of preditions



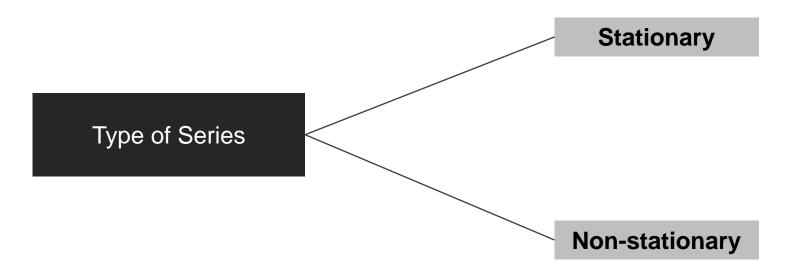
- Forecasts that project patterns identified in recent time-series observations
 - Time-series a time-ordered sequence of observations taken at regular time intervals
- Assume that future values of the time-series can be estimated from past values of the time-series



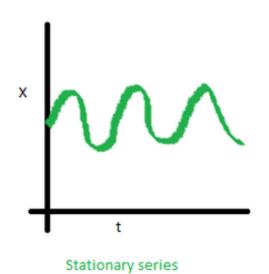
Time Series Patterns

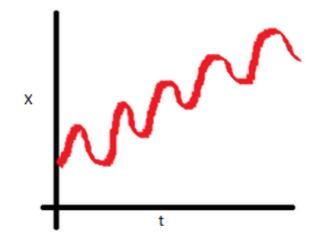
Time series can be decomposed onto several components:

- (1) **Trend:** a long term increase or decrease occurs.
- (2) **Seasonal:** series influenced by seasonal factors. Thus the series exhibits a behaviour that more or less repeats over a *fixed period of time*, such as a year. Such behaviour is easily demonstrated in a *seasonal plot*, where the data is plotted according to where in the seasonal cycle it was observed).
- (3) **Cyclical (not addressed in this course):** series rises and falls regularly but these are *not of fixed period*. Example: economic data rises and falls according to the business cycle, but this cycle varies in length considerably.
- (4) Error: this corresponds to random fluctuations that cannot be explained by a deterministic pattern.



Constant trend

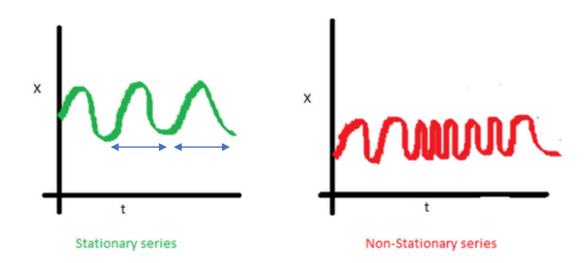




Non-Stationary series

homogeneous variance x x x x X Stationary series homogeneous variance x X X X X X X Non-Stationary series

Autocovariance

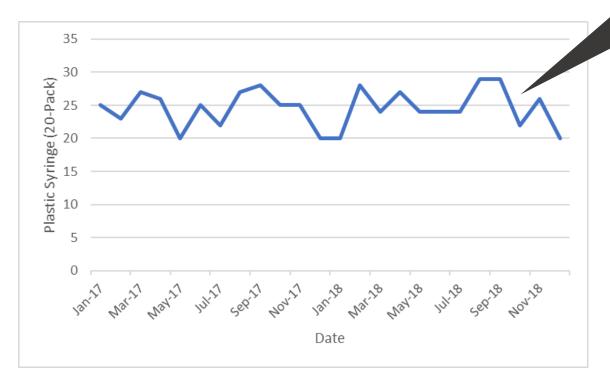


Methods for non-stationary time series:

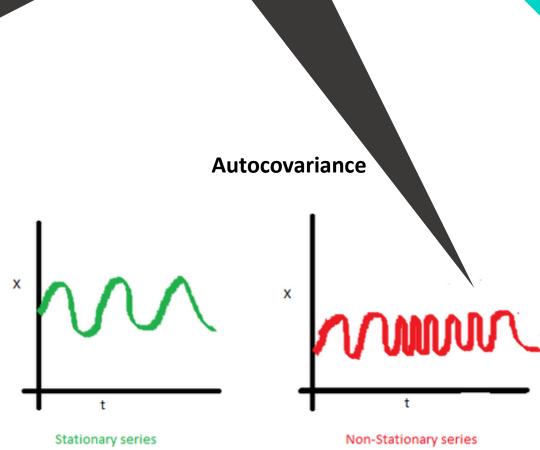
- ☐ Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

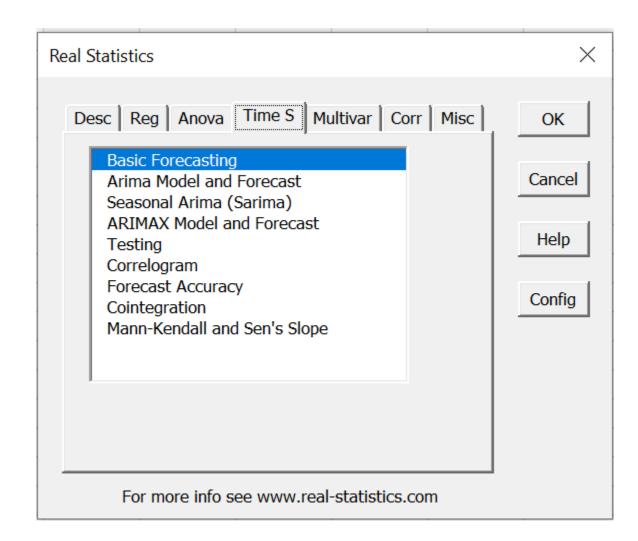
The more useful for realistic datasets

Date (month)	Plastic Syringe (20-Pack)
Jan-17	25
Feb-17	23
Mar-17	27
Apr-17	26
May-17	20
Jun-17	25
Jul-17	22
Aug-17	27
Sep-17	28
Oct-17	25
Nov-17	25
Dec-17	20
Jan-18	20
Feb-18	28
Mar-18	24
Apr-18	27
May-18	24
Jun-18	24
Jul-18	24
Aug-18	29
Sep-18	29
Oct-18	22
Nov-18	26
Dec-18	20
dataset	+



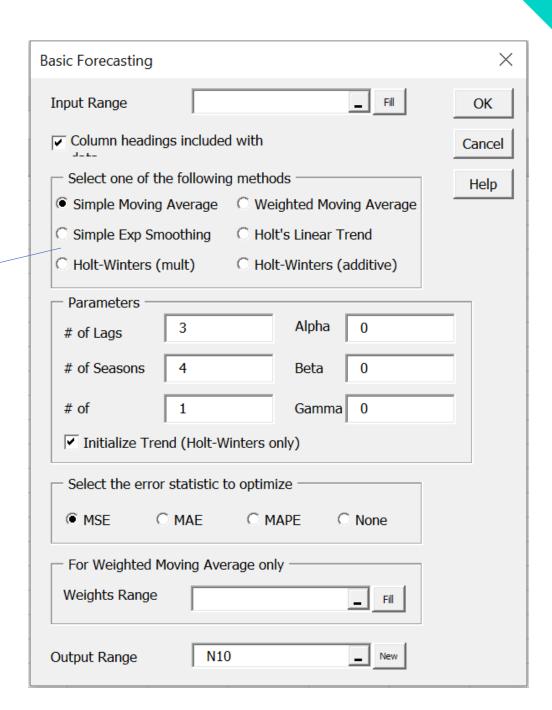
Clearly a non-stationary series...





Methods for non-stationary time series:

- ☐ Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)



☐ Moving Average (MA)

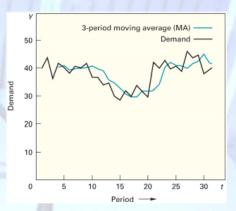
 Technique that averages a number of the most recent actual values in generating a forecast

$$F_t = \text{MA}_n = \frac{\sum_{i=1}^n A_{t-i}}{n}$$
 where
$$F_t = \text{Forecast for time period } t$$

$$MA_n = n \text{ period moving average}$$

$$A_{t-1} = \text{Actual value in period } t-1$$

$$n = \text{Number of periods in the moving average}$$



As new data become available, the forecast is updated by adding the newest value and dropping the oldest and then re-computing the average

The number of data points included in the average determines the model's sensitivity

Fewer data points used-- more responsive More data points used-- less responsive

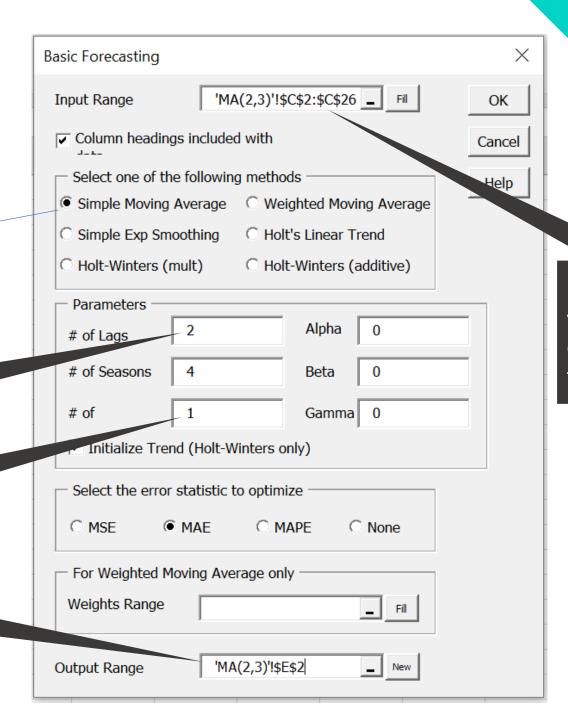
Methods for non-stationary time series:

☐ Moving Average (MA)

Two(2) moving periods...

Forecasting one next period only

Print the results starting from the indicated cell...



Range of observed variables, syringe consumption, over time...

Simple Moving Average									
Plastic Syringe (20-Pack)	forecast					Foreca	ast		
25									
23			35						
27	=AVERAGE(E5:E6)		30 -					^	
26	AVERAGE(number1, [number2],)	25 -	\M		\sim			
20	26.5		u 20 -	\ \ \ \		\ <i>X</i> /		V /	
25	23							•	
22	22.5		> 15 -						actual
27	23.5		10 -						forecast
28	24.5		5 -						
25	27.5		0						
25	26.5		0 +	1 3 5	7 9 11	l 13 15	17 19 21	23 25	
20	25			1 5 5	, , , 11	time	1, 1, 2,	. 23 23	
20	22.5					ume			
2.0			L	1	1	1	1	1	

The algorithm performance indicators...

MAE	MSE	MAPE
2.840909091	13.03409091	0.118669

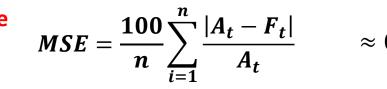
Methods for non-stationary time series:

Moving Average (MA)

<u>Optimum</u>

Mean Absolute Error(MAE)
$$MAE = \frac{1}{n} \sum_{t=1}^{n} |A_t - F_t|$$

Mean Squared Error(MSE)
$$MSE = \frac{1}{n} \sum_{t=1}^{n} (A_t - F_t)^2$$



Plastic Syringe (20-Pack)	forecast
25	
23	
27	24
26	25
20	26.5
25	23
22	22.5
27	23.5
28	24.5
25	27.5
25	26.5
20	25
20	22.5
28	20
24	24
27	26
24	25.5

Simple Moving Average

Error = 27 - 24 = 3

Errors...

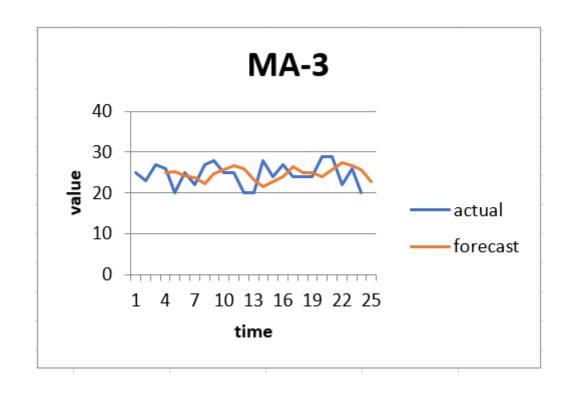
 $e_t = A_t - F_t$

Methods for non-stationary time series:

☐ Moving Average (MA)...3 moving periods...

MA-3 performance is worst compared to MA-2...

Learning: One can make more accurate predictions using MA-2



MAE	MSE	MAPE
3.015873016	12.92063492	0.127219
0.0150,0010	12.52000 .52	0.12

Methods for non-stationary time series:

- Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

- The most recent values in a time series are given more weight in computing a forecast
- The choice of weights, w, is somewhat arbitrary and involves some trial and error

$$F_{t} = w_{t}(A_{t}) + w_{t-1}(A_{t-1}) + \dots + w_{t-n}(A_{t-n})$$

where

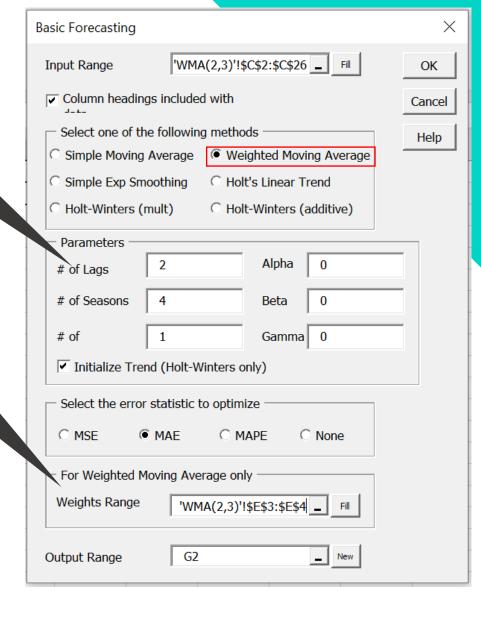
 w_t = weight for period t, w_{t-1} = weight for period t-1, etc.

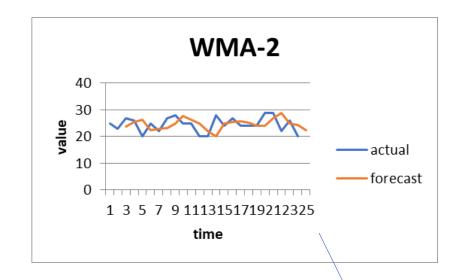
 A_t = the actual value for period t, A_{t-1} = the actual value for period t-1, etc.

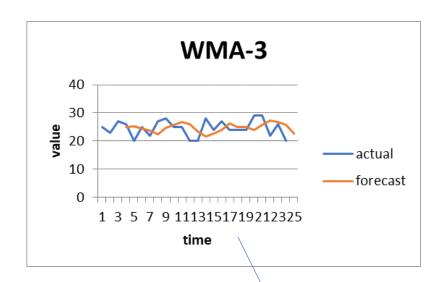
Two(2) moving periods

Date (month)	Plastic Syringe (20-Pack)	WMA(2)
Jan-17	25	0.4
Feb-17	23	0.6
Mar-17	27	
Apr-17	26	
May-17	20	
Jun-17	25	WMA(3)
Jul-17	22	0.2
Aug-17	27	0.3
Sep-17	28	0.5
Oct-17	25	
Nov-17	25	
Dec-17	20	
Jan-18	20	
Feb-18	28	
	~ 4	

The weights should be defined in a column...



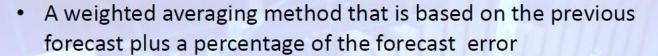




MAE		MSE	MAPE	MAE	MSE	MAPE
2.9181	81818	13.18363636	0.121934	3.015873	12.92063	0.127219

Methods for non-stationary time series:

- Moving Average (MA)
- Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- **☐** Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)



$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

where

 $F_t =$ Forecast for period t

 F_{t-1} = Forecast for the previous period

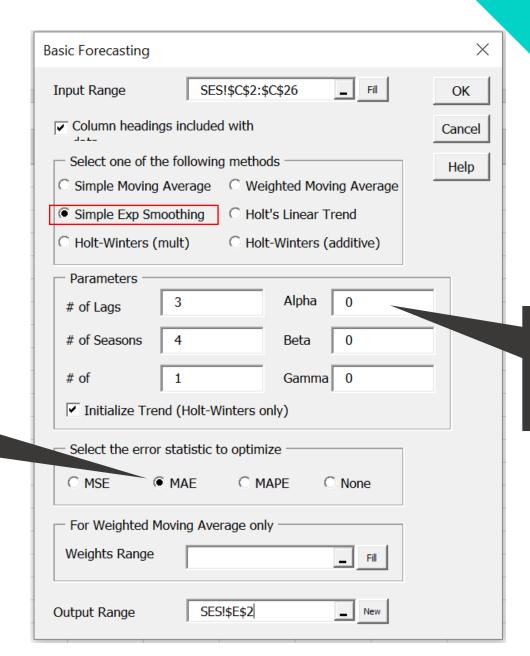
 α =Smoothing constant

 A_{t-1} = Actual demand or sales from the previous period

$$F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

$$F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

How do we optimize this user-defined parameter in order to reach the best possible MAE?



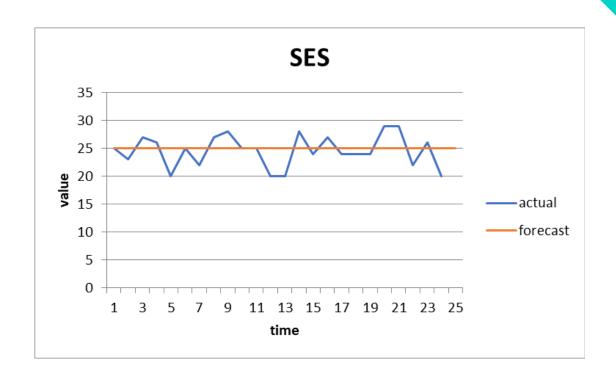
Let alpha as "zero"...it will be optimize

Methods for non-stationary time series:

- Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

MAE	MSE	MAPE
2.347826087	8.260869565	0.10068

Best MAE so far...!



Methods for non-stationary time series:

- Moving Average (MA)
- Weighted Moving Average (WMA)
- Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

Double exponential Smoothing (DES) Algorithm (also known as Holt's Linear Method) is an extension to the SES algorithm originally designed for time series with no trend nor seasonal patterns. It includes a term to model linear trends. Holt's method allows the estimates of level (L_t) and slope (b_t) to be adjusted with each new observation.

Real Stat assumes:

b1 = 0

F1 = empty

Better results...

Init: $L_1 = y_1$ $b_1 = y_2 - y_1$ $F_1 = y_1$ and choose $0 \le \alpha \le 1$ and $0 \le \beta \le 1$

Compute and Forecast:

$$L_t = \alpha \ y_t + (1 - \alpha) \ (L_{t-1} + b_{t-1})$$

$$b_t = \beta \ (L_t - L_{t-1}) + (1 - \beta) \ b_{t-1}$$

$$F_{t+1} = L_t + b_t$$

Until no more observation are available then

$$F_{n+k} = L_n + k \ b_n, \ \forall \ k \ge 1$$

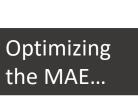
Double Exponential Smoothing (Holt's Thear Model) Algorithm.

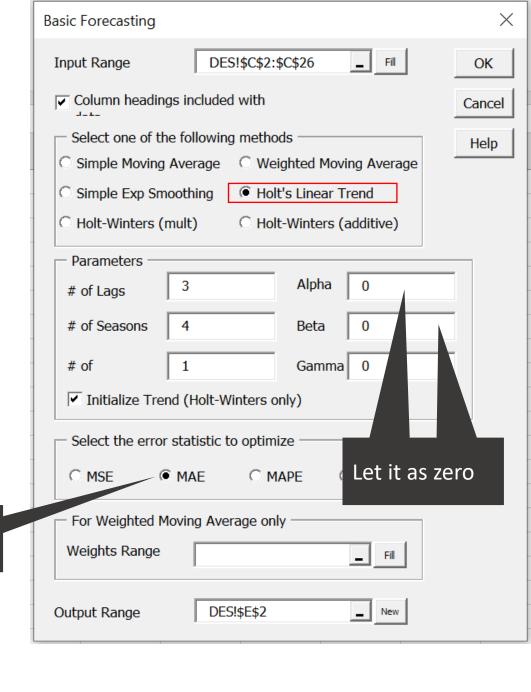
Note that no forecasts or fitted values can be computed until y_1 y_2 have been observed. Also by convention, we let $F_1 = y_1$.

Two(2) user-defined parameters:
Alpha and Beta

Methods for non-stationary time series:

- Moving Average (MA)
- Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)





Methods for non-stationary time series:

- Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

		DLJ	
	35 -		
	30 -		
	25 -		
value	20 -	V • V	
val	15 -		actual
	10 -		forecast
	5 -		
	0 -		
		1 3 5 7 9 11 13 15 17 19 21 23 25	
		time	

DES

alpha	beta	MAE	MSE	MAPE
0	0	2.347826	8.26087	0.10068

Very similar to the SES...due to there is no trend (+ or -) within the dataset...DES would performs better when data exhibits certain trend...

Methods for non-stationary time series:

- Moving Average (MA)
- Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

Seasonality: it is traditionally defined by the number of observations within a year...

Three parameters...alpha, beta and gamma

Seasonality is new

Init:

$$\begin{vmatrix} L_s = \frac{1}{s} \sum_{i=1}^{s} y_i \\ b_s = \frac{1}{s} \left[\frac{y_{s+1} - y_1}{s} + \frac{y_{s+2} - y_2}{s} + \dots + \frac{y_{2s} - y_s}{s} \right] \\ S_i = y_i - L_s, \ i = 1, \dots, s$$

and choose $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ and $0 \le \gamma \le 1$ Compute for t > s:

level
$$L_t = \alpha \ (y_t - S_{t-s}) + (1 - \alpha) \ (L_{t-1} + b_{t-1})$$
 trend $b_t = \beta \ (L_t - L_{t-1}) + (1 - \beta) \ b_{t-1},$

seasonal
$$S_t = \gamma (y_t - L_t) + (1 - \gamma) S_{t-s}$$

forecast
$$F_{t+1} = L_t + b_t + S_{t+1-s}$$

Until no more observationare available and subsequent forecasts:

$$F_{n+k} = L_n + k \ b_n + S_{n+k-s}$$

Seasonal Holt Winter's Additive Model Algorithm (noted SHW+).

s is the length of the seasonal cycle. We have to pick the values of α , β and γ . As with the other methods (i.e. SES and DES), we can use the SSE/RMSE or MAPE to choose the best values.

Methods for non-stationary time series:

- Moving Average (MA)
- **☐** Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

_ , ,	
Date (month)	Plastic Syringe (20-Pack)
Jan-17	25
Feb-17	23
Mar-17	27
Apr-17	26
May-17	20
Jun-17	25
Jul-17	22
Aug-17	27
Sep-17	28
Oct-17	25
Nov-17	25
Dec-17	20
Jan-18	20
Feb-18	28
Mar-18	24
Apr-18	27
May-18	24
Jun-18	24
Jul-18	24
Aug-18	29
Sep-18	29
Oct-18	22
Nov-18	26
Dec-18	20

(+)

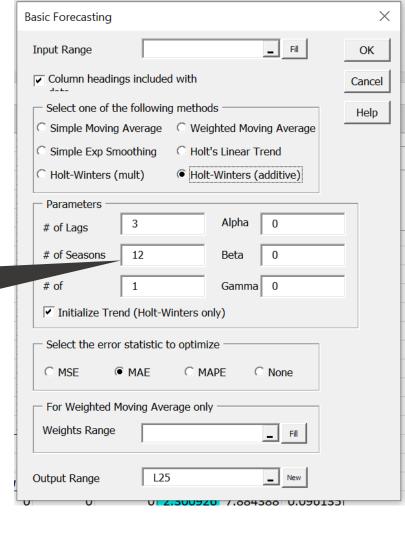
dataset

There are 12 observations every year

Methods for non-stationary time series:

- Moving Average (MA)
- **☐** Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

12 observations during each revised year...



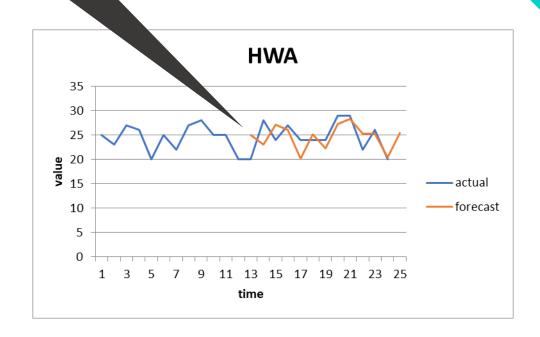
Methods for non-stationary time series:

- ☐ Moving Average (MA)
- ☐ Weighted Moving Average (WMA)
- Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

alpha	beta	gamma	MAE	MSE	MAPE
0	0	0	2.300926	7.884388	0.096135
	α+γ	0			

Better that SES and DES

Forecasting start right after the first "s" cycle (13th observation)



Methods for non-stationary time series:

Of the series co

■ Moving Average (MA)

■ Weighted Moving Average (WMA)

Simple Exponential Smoothing (SES)

Double Exponential Smoothing (DES) (Holt's Method)

☐ Holt Winter's Additive (HWA)

□ Holt Winter's Multiplicative (HWM)

The forecasting equation is formed by the multiplication of the series components...

Init:

$$\begin{vmatrix} L_s = \frac{1}{s} \sum_{i=1}^{s} y_i \\ b_s = \frac{1}{s} \left[\frac{y_{s+1} - y_1}{s} + \frac{y_{s+2} - y_2}{s} + \dots + \frac{y_{2s} - y_s}{s} \right] \\ S_i = \frac{y_i}{L_s}, \ i = 1, \dots, s$$

and choose $0 \le \alpha \le 1$ and $0 \le \beta \le 1$ and $0 \le \gamma \le 1$

Compute for t > s:

level
$$L_t = \alpha \frac{y_t}{S_{t-s}} + (1 - \alpha) (L_{t-1} + b_{t-1})$$

trend $b_t = \beta (L_t - L_{t-1}) + (1 - \beta) b_{t-1}$,

seasonal
$$S_t = \gamma \frac{y_t}{L_t} + (1 - \gamma) S_{t-s}$$

forecast
$$F_{t+1} = (L_t + b_t) S_{t+1-s}$$

Until no more observation are available and subsequent forecasts:

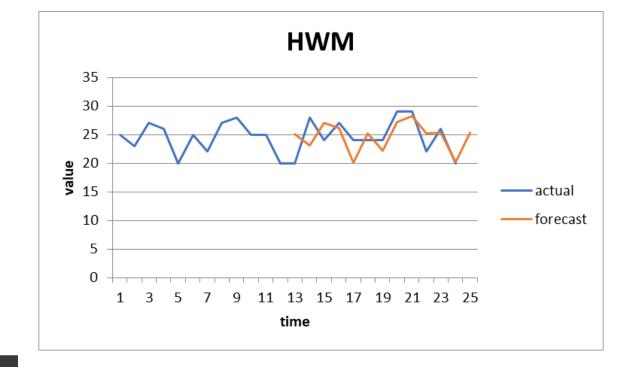
$$F_{n+k} = (L_n + k \cdot b_n) \ S_{n+k-s}$$

Seasonal Holt Winter's Multiplicative Model Algorithm (noted SHW \times).

Methods for non-stationary time series:

- Moving Average (MA)
- **☐** Weighted Moving Average (WMA)
- Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES) (Holt's Method)
- Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)

alpha	beta	gamma	MAE	MSE	MAPE
0	0	0	2.295317	7.902241	0.095901
	α+γ	0			

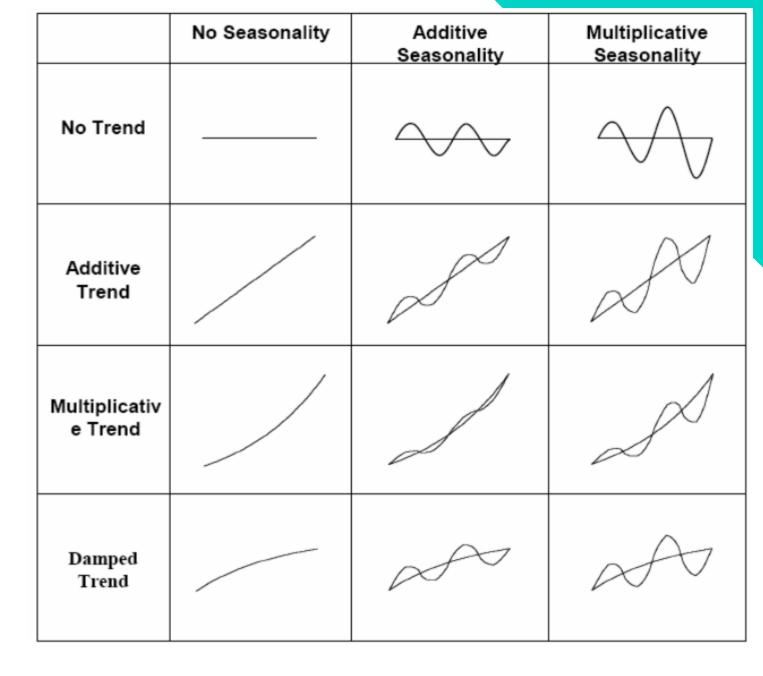


Best performance reached

Methods for non-stationary time series:

☐ Moving Average	ge ((MA))
------------------	------	------	---

- ☐ Weighted Moving Average (WMA)
- ☐ Simple Exponential Smoothing (SES)
- □ Double Exponential Smoothing (DES) (Holt's Method)
- ☐ Holt Winter's Additive (HWA)
- ☐ Holt Winter's Multiplicative (HWM)



Thanks...

Erasmus+ KA2 Strategic Partnership 2017-1-1FI01-KA203-034721 Healthcare Logistics Education and Learning Pahtway