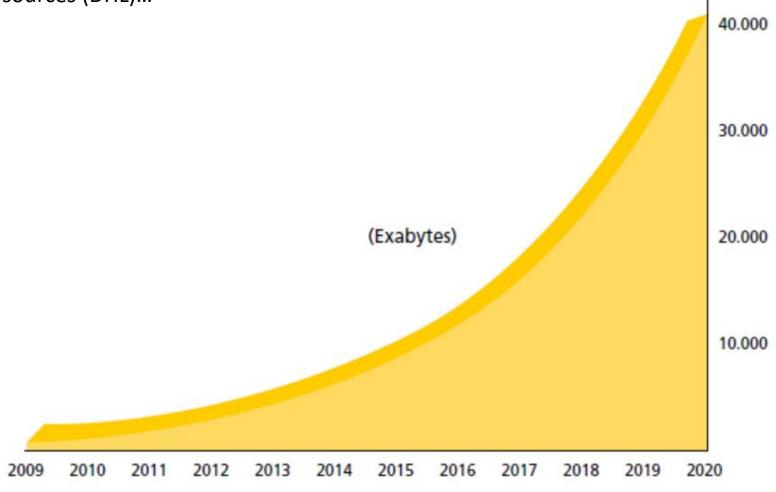


Introduction to Healthcare Supply Chain (HCSC) Analytics

of the European Union

Industry 4.0

The massive deployment of connected devices such as cars, smartphones, RFID readers, webcams, and sensor networks adds a huge number of autonomous data sources (DHL)...



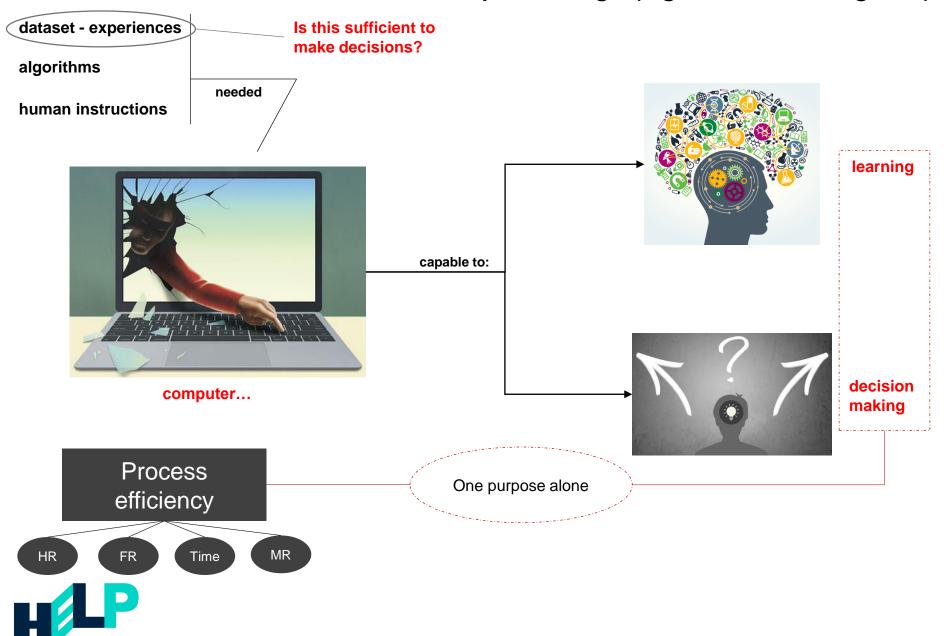
Exponential data growth between 2010 and 2020; Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

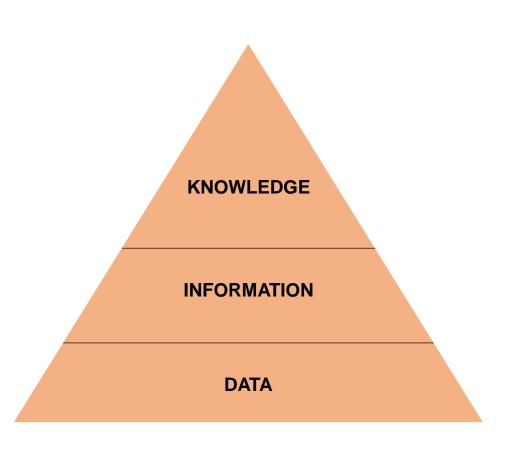
Gigamon Blog

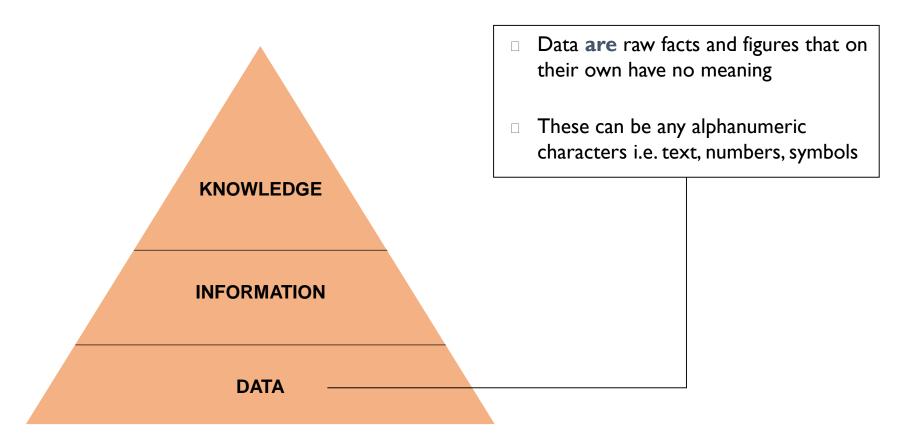
Data processing...(e.g. Artificial Intelligence)

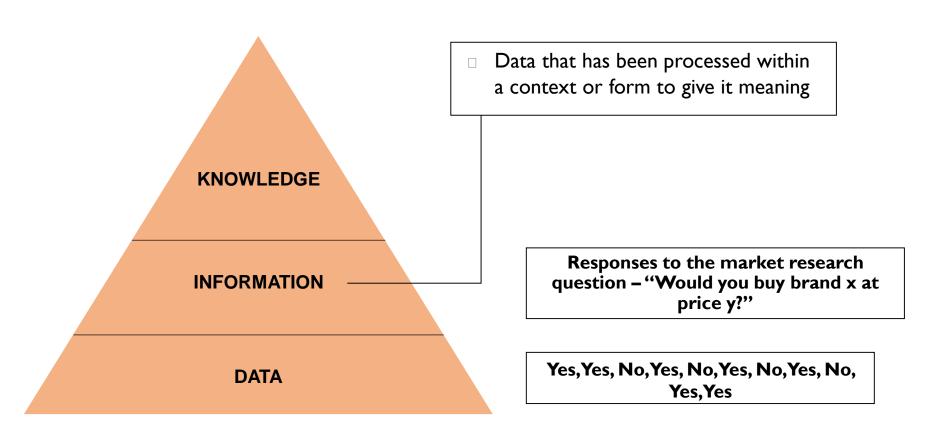


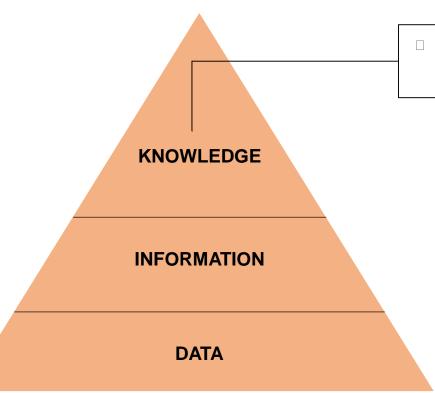
Data processing...(e.g. Artificial Intelligence)



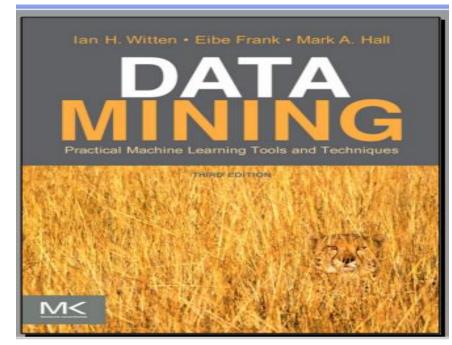






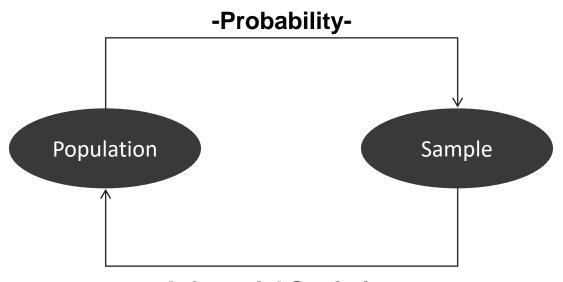


Knowledge is the understanding of rules needed to interpret information

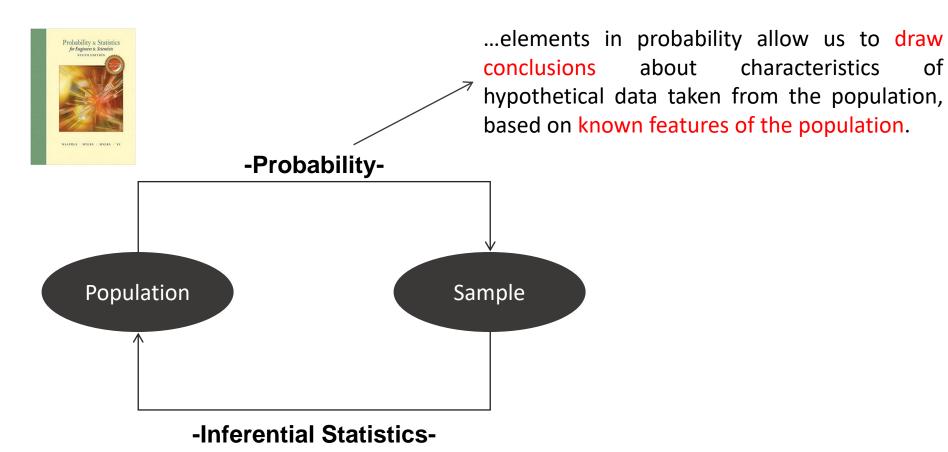


HCSC Analytics...data processing for decision making aimed to:

Hierarchical level	Facility	Supply and Inventory	Transportation	Customer service
Strategic	 Facility location Capacity setting Technology selection Process configuration Setting the IT system for planning and controlling 	 Defining the inventory policy Identify the supplier list and select the best ones Product design Choose the IT system (S&I) Warehouse design Material handling system 	- Transportation mode - IT system (Trans)	 Define the service policy and strategy Portfolio indicators
Tactical	- Capacity planning during mid term	 - Purchase planning (procurement) - Definition of supplies - Planning the inventory level - Planning the safety stock 	Transportation system capacityFleet routingTransportation planning during mid term	 Demand projection during mid term Advertisement planning
Operative	Order schedulingProduction executionOrder controlMaintenance planning	 Order dispatching and packing Material requirement planning Purchase control Stock control Discharge and loading operations 	Delivery planningVehicle routingControl of transport operations	 Demand projection (short term) Tracking the customer service indicators Loyalty activities



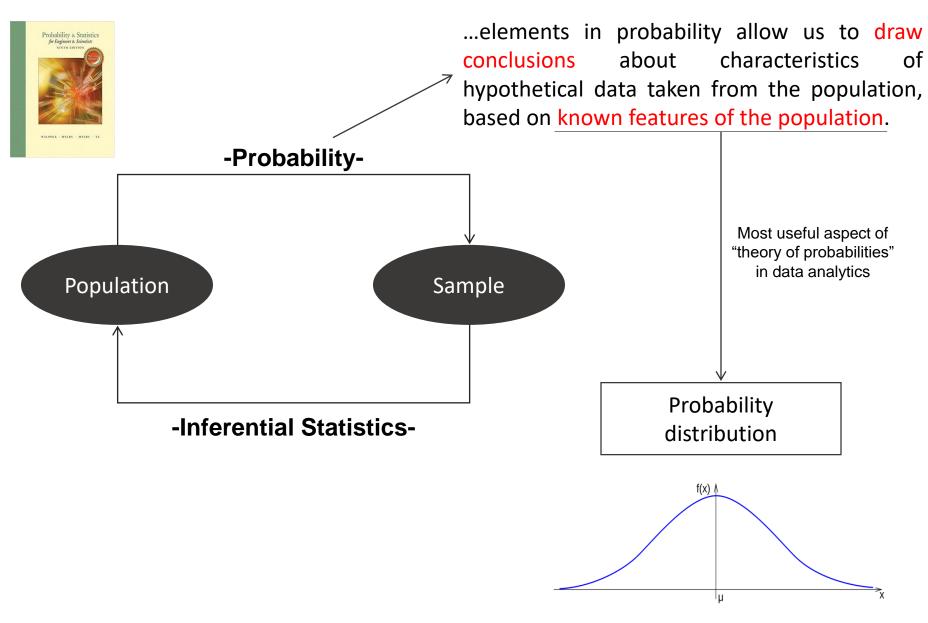
-Inferential Statistics-



about

characteristics

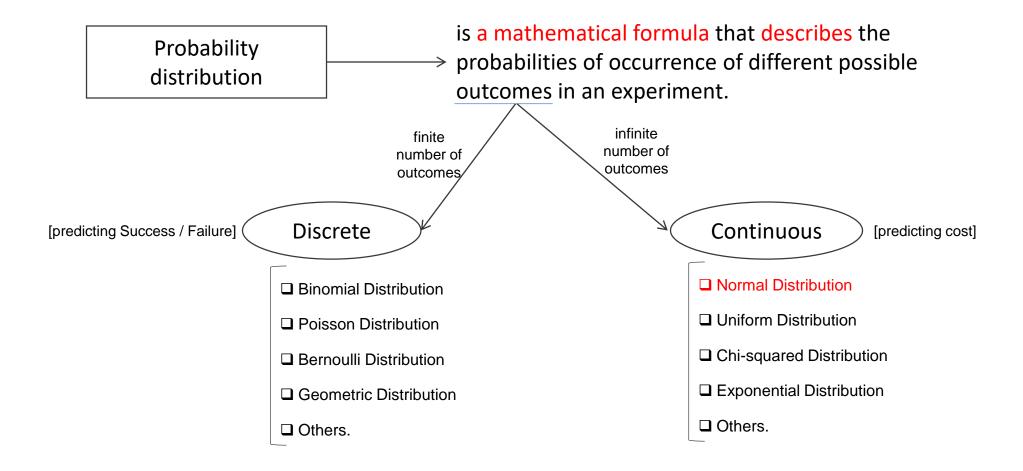
of



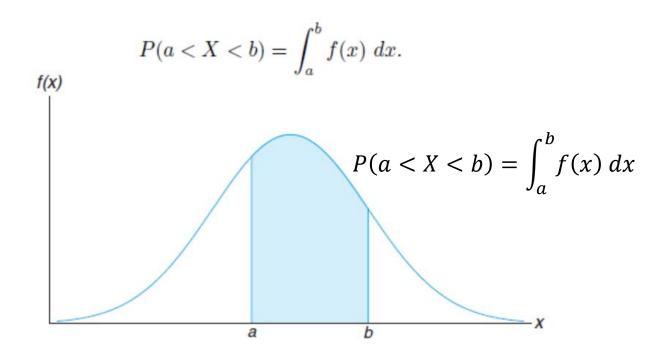
Probability distribution

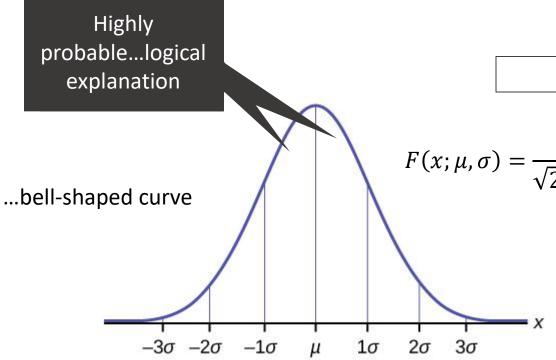
is a mathematical formula that describes the

→ probabilities of occurrence of different possible outcomes in an experiment.

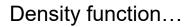


Continuous Probability Distribution





Normal Distribution: describes many phenomena that occur in nature, industry, and research



$$F(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} , \qquad -\infty < x < +\infty$$

x: random variable

 μ : mean

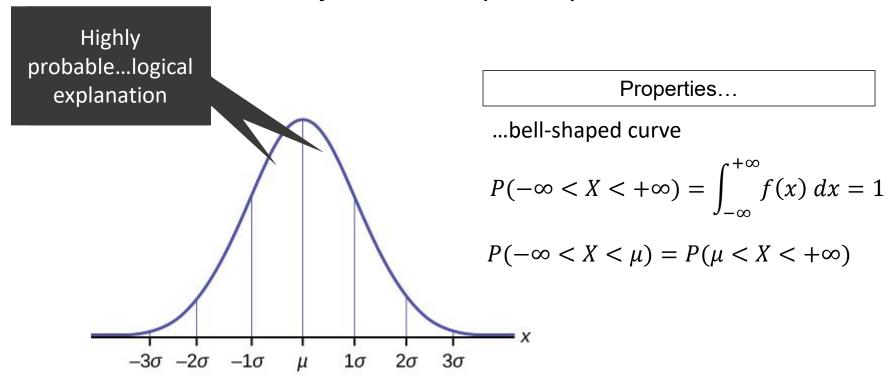
Deeper study later

 σ : standard deviation

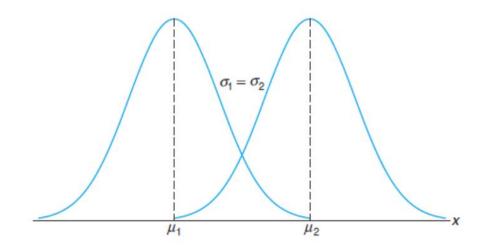
 π : 3.14159 ...

e: 2.71828 ...

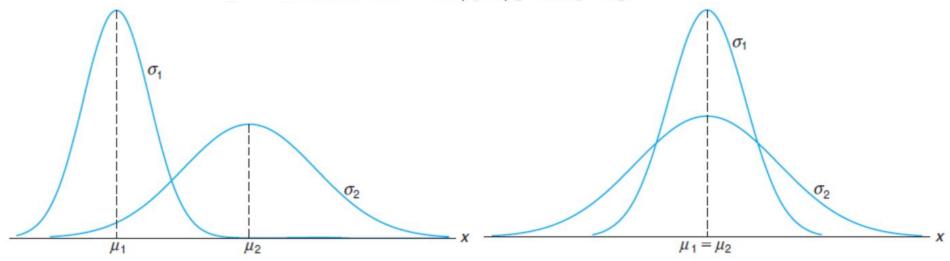
$$X \sim N(\mu, \sigma^2) \dots \mu \pm \sigma$$



Normal Distribution: describes many phenomena that occur in nature, industry, and research

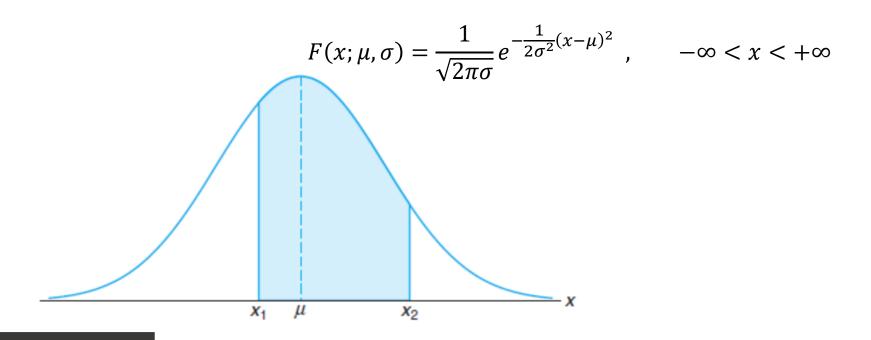


Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 = \sigma_2$.

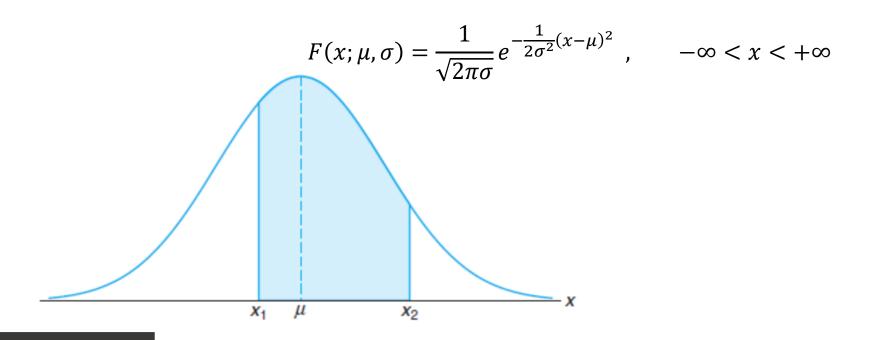


Normal curves with $\mu_1 < \mu_2$ and $\sigma_1 < \sigma_2$.

Normal curves with $\mu_1 = \mu_2$ and $\sigma_1 < \sigma_2$.

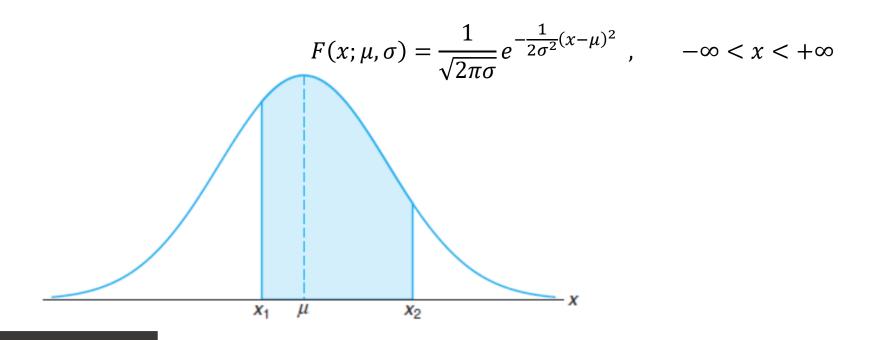


Computing the probability values



Computing the probability values

$$P(x_1 < X < x_2) = \frac{1}{\sqrt{2\pi\sigma}} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx \quad ... \text{ hard to solve}$$



Computing the probability values

$$P(x_1 < X < x_2) = \frac{1}{\sqrt{2\pi\sigma}} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx$$
 ...hard to solve

Z-score

Z-score

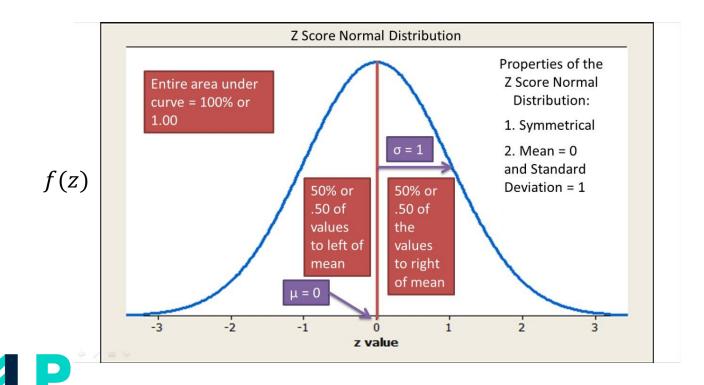
benefits...

- **Standardize** all the observations of any normal random variable *X* into a new set of observations;
- ☐ Reduce the complexity of computing the probability;
- ☐ Make possible the **statistical comparison** between to random variables;
- ☐ The **tabulation** of Normal Distribution exists for Z-score only.

formula...

$$Z = \frac{x - \mu}{\sigma}$$

The distribution of a normal random variable with mean 0 and variance 1 is called a **standard normal distribution**.



Practicing calculations of probabilities using the Normal Distribution...

 $N(\mu, \sigma^2)$

practical examples...

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

$$Z = \frac{x(15) - \mu(12)}{\sigma(\sqrt{4} = 2)} = \frac{15 - 12}{2} = \frac{3}{2} = 1.5$$

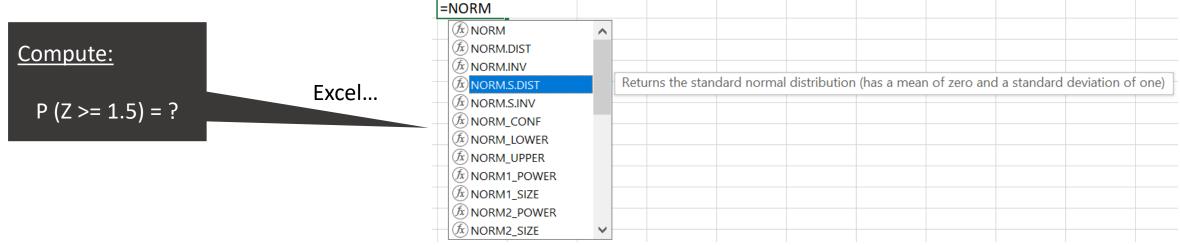
Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

$$Z = \frac{x(15) - \mu(12)}{\sigma(\sqrt{4} = 2)} = \frac{15 - 12}{2} = \frac{3}{2} = 1.5$$

<u>Compute:</u>

P(Z >= 1.5) = ?

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?



Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

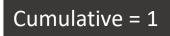
Compute:

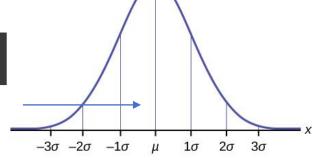
P(Z >= 1.5) = ?

Excel...

=NORM.S.DIST(

NORM.S.DIST(**z**, cumulative)





The area below the curve from the left asymptote (bell) to the define z-value

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

Cumulative = 1

$$P(Z >= 1.5) = ?$$

Excel...

=NORM.S.DIST(1.5,TRUE)				
D	Е	F	G	
			0.933193	

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu = 12$ and $\sigma^2 = 4$, days and squared-days, respectively). For the firm that receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

$$P(Z >= 1.5) = ?$$

Excel...

	0.933193
Prob:	=1-G3

Prob: 0.066807

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

Compute:

P ($250 \le X \le 325$) = ?

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

<u>Compute:</u>

$$P(-2 \le Z \le +1) = ?$$

$$Z_{250} = \frac{x(250) - \mu(300)}{\sigma(25)} = \frac{-50}{25} = -2$$

$$Z_{325} = \frac{x(325) - \mu(300)}{\sigma(25)} = \frac{25}{25} = +1$$

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

$$Z_{250} = \frac{x(250) - \mu(300)}{\sigma(25)} = \frac{-50}{25} = -2^{-1}$$

$$Z_{325} = \frac{x(325) - \mu(300)}{\sigma(25)} = \frac{25}{25} = +1$$

Compute:

$$P(-2 \le Z \le +1) =$$
 $P(Z >= -2) - P(Z >= +1)$

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

$$Z_{250} = \frac{x(250) - \mu(300)}{\sigma(25)} = \frac{-50}{25} = -2$$

$$Z_{325} = \frac{x(325) - \mu(300)}{\sigma(25)} = \frac{25}{25} = +1$$

Compute:

$$P(-2 \le Z \le +1) =$$

 $P(Z >= -2) - P(Z >= +1)$

... 0.8186

=NORM.S.DIST(1,TRUE)

NORM.S.DIST(z, cumulative)

=NORM.S.DIST(-2,TRUE)

NORM.S.DIST(z, cumulative)

practical examples...

Empirical evidences show that certain supplier can provide an important medical device within a normal distributed delivery time (with $\mu=12$ and $\sigma^2=4$, days and squared-days, respectively). For the π receives the devices, more 15 days of lead time would make almost impossible to serve their customers. The main question is: how likely is that delivery time overcomes 15 days?

How do I know this?

Historical dataset provide sufficient evidence to assume our oxygenated water demand is normally distributed, with mean 300 Kgs and standard deviation of 25 Kgs. After a discussion with the financial department, we realize that for overcoming the breaking-even point our sales should be between 250 and 325 kilograms. How probable it is that our sales are between 250 and 325 kilograms?

The goodness of fit test...

The *goodness of fit test* is used to *test* if sample data *fits* a distribution from a certain population (i.e. a population with a normal distribution or one with a Weibull distribution).

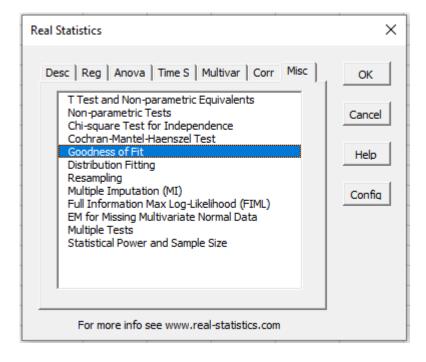
Professional software

Real Statistics Using Excel

Charles Zaiontz

Surgical gloves 12.8 11.51 19.32 18.4 14.34 17.2 18.78 12.69 16.09 14.06 14.64 14 17.88 15.49 18.61 11.48 12.58

...carry it out in Excel...

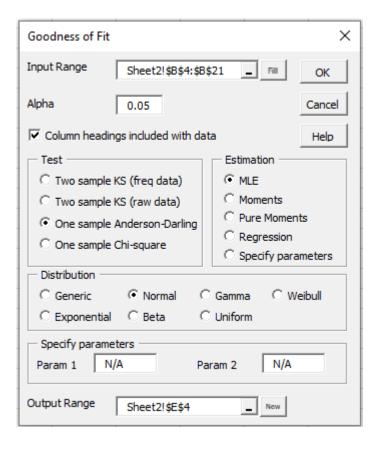


The *goodness of fit test* is used to *test* if sample data *fits* a distribution from a certain population (i.e. a population with a normal distribution or one with a Weibull distribution).

Professional software



...carry it out in Excel...



The *goodness of fit test* is used to *test* if sample data *fits* a distribution from a certain population (i.e. a population with a normal distribution or one with a Weibull distribution).

Surgical gloves

12.8

11.51

19.32 18.4

14.34

17.2 18.78

12.69

16.09

14.06

14.64

17.88

15.49

18.61 11.48

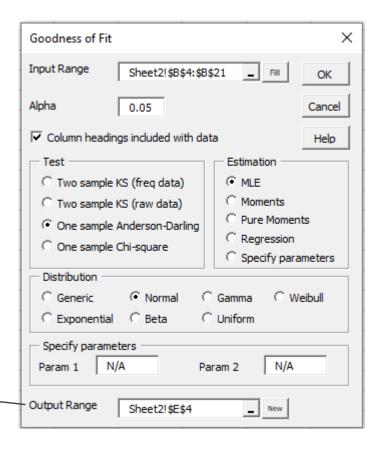
12.58

14

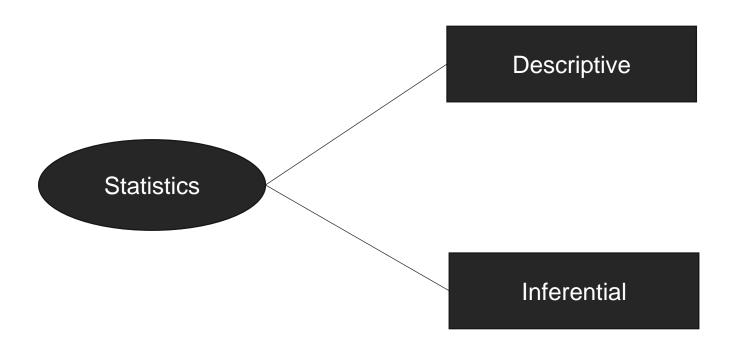
Professional software

Anderson	-Darling Te	st		
Alpha	0.05		mean	15.28647
Distrib	Normal		std dev	2.586869
Method	MLE			
AD stat	0.509352			
p-value	0.19793			
crit value	0.713947			

...carry it out in Excel...



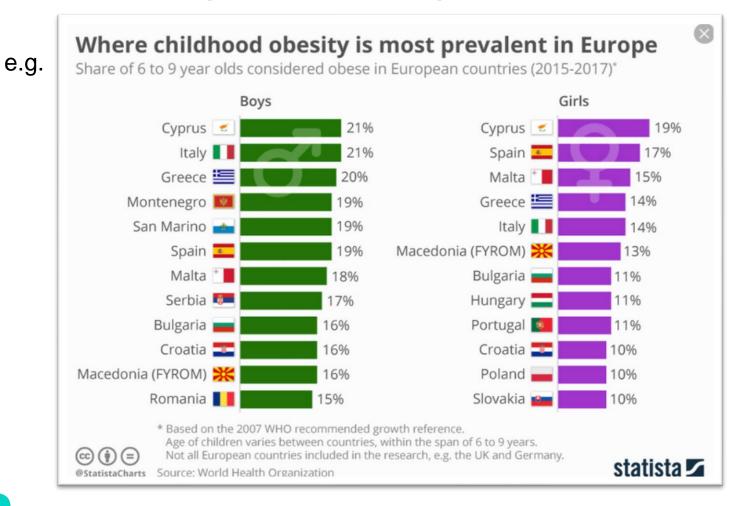
Refreshing statistics...



Descriptive

Descriptive statistics is the term given to the analysis of data that helps to describe, show or summarize data in a meaningful way such that, for example, patterns might emerge from the data.

Example of descriptive results



Measures of central tendency: these are ways of describing the central position of a frequency distribution for a group of data

Mean (average, geometric, harmonic)

Median

Mode

Later in Excel

Measures of central tendency: these are ways of describing the central position of a frequency distribution for a group of data

Mean (average, geometric, harmonic)

Median

Mode

Later in Excel as well

working with samples...no compensation

$$G = \sqrt[n]{x_i \cdot x_{i+1} \cdot x_{i+2} \cdot \cdots \cdot x_n}$$

Measures of central tendency: these are ways of describing the central position of a frequency distribution for a group of data

Mean (average, geometric, harmonic)

Median

Mode

Examine in details

$$H = \frac{N}{\sum_{i=1}^{n} 1/X_i}$$

working with samples...less important the positive extreme values

Date	Surgical gloves	Mean(average)	Errors
Jan-17	12.8	16.74529412	=ABS(C3-E3
Feb-17	11.51	16.74529412	ABS(number)
Mar-17	19.32	16.74529412	
Apr-17	18.4	16.74529412	
May-17	14.34	16.74529412	
Jun-17	31	16.74529412	
Jul-17	18.78	16.74529412	
Aug-17	12.69	16.74529412	
Sep-17	16.09	16.74529412	
Oct-17	14.06	16.74529412	
Nov-17	14.64	16.74529412	
Dec-17	25	16.74529412	
Jan-18	17.88	16.74529412	
Feb-18	15.49	16.74529412	
Mar-18	18.61	16.74529412	
Apr-18	11.48	16.74529412	
May-18	12.58	16.74529412	

Date	Surgical gloves	Mean(average)	Errors	Geometric-Mean Errors
Jan-17	12.8	16.74529412	3.945294	=GEOMEAN(C3:C19)
Feb-17	11.51	16.74529412	5.235294	GEOMEAN(number1, [number2],)
Mar-17	19.32	16.74529412	2.574706	16.13918802
Apr-17	18.4	16.74529412	1.654706	16.13918802
May-17	14.34	16.74529412	2.405294	16.13918802
Jun-17	31	16.74529412	14.25471	16.13918802
Jul-17	18.78	16.74529412	2.034706	16.13918802
Aug-17	12.69	16.74529412	4.055294	16.13918802
Sep-17	16.09	16.74529412	0.655294	16.13918802
Oct-17	14.06	16.74529412	2.685294	16.13918802
Nov-17	14.64	16.74529412	2.105294	16.13918802
Dec-17	25	16.74529412	8.254706	16.13918802
Jan-18	17.88	16.74529412	1.134706	16.13918802
Feb-18	15.49	16.74529412	1.255294	16.13918802
Mar-18	18.61	16.74529412	1.864706	16.13918802
Apr-18	11.48	16.74529412	5.265294	16.13918802
May-18	12.58	16.74529412	4.165294	16.13918802

$$G = \sqrt[n]{x_i \cdot x_{i+1} \cdot x_{i+2} \cdot \cdots \cdot x_n}$$

Н	_	N	
_	_	$\sum_{i=1}^{n}$	$\overline{\mathbb{I}_{X_i}}$

Date	Surgical gloves	Mean(average)	Errors	Geometric-Mean	Errors	Harmonic-Mean Errors
Jan-17	12.8	16.74529412	3.945294	16.13918802	3.339188	=HARMEAN(C3:C19)
Feb-17	11.51	16.74529412	5.235294	16.13918802	4.629188	HARMEAN(number1, [number2],)
Mar-17	19.32	16.74529412	2.574706	16.13918802	3.180812	15.6313613
Apr-17	18.4	16.74529412	1.654706	16.13918802	2.260812	15.6313613
May-17	14.34	16.74529412	2.405294	16.13918802	1.799188	15.6313613
Jun-17	31	16.74529412	14.25471	16.13918802	14.86081	15.6313613
Jul-17	18.78	16.74529412	2.034706	16.13918802	2.640812	15.6313613
Aug-17	12.69	16.74529412	4.055294	16.13918802	3.449188	15.6313613
Sep-17	16.09	16.74529412	0.655294	16.13918802	0.049188	15.6313613
Oct-17	14.06	16.74529412	2.685294	16.13918802	2.079188	15.6313613
Nov-17	14.64	16.74529412	2.105294	16.13918802	1.499188	15.6313613
Dec-17	25	16.74529412	8.254706	16.13918802	8.860812	15.6313613
Jan-18	17.88	16.74529412	1.134706	16.13918802	1.740812	15.6313613
Feb-18	15.49	16.74529412	1.255294	16.13918802	0.649188	15.6313613
Mar-18	18.61	16.74529412	1.864706	16.13918802	2.470812	15.6313613
Apr-18	11.48	16.74529412	5.265294	16.13918802	4.659188	15.6313613
May-18	12.58	16.74529412	4.165294	16.13918802	3.559188	15.6313613

Date	Surgical gloves	Mean(average)	Errors	Geometric-Mean	Errors	Harmonic-Mean	Errors
Jan-17	12.8	16.74529412	3.945294	16.13918802	3.339188	15.6313613	2.831361
Feb-17	11.51	16.74529412	5.235294	16.13918802	4.629188	15.6313613	4.121361
Mar-17	19.32	16.74529412	2.574706	16.13918802	3.180812	15.6313613	3.688639
Apr-17	18.4	16.74529412	1.654706	16.13918802	2.260812	15.6313613	2.768639
May-17	14.34	16.74529412	2.405294	16.13918802	1.799188	15.6313613	1.291361
Jun-17	● 31	16.74529412	14.25471	16.13918802	14.86081	15.6313613	15.36864
Jul-17	18.78	16.74529412	2.034706	16.13918802	2.640812	15.6313613	3.148639
Aug-17	12.69	16.74529412	4.055294	16.13918802	3.449188	15.6313613	2.941361
Sep-17	16.09	16.74529412	0.655294	16.13918802	0.049188	15.6313613	0.458639
Oct-17	14.06	16.74529412	2.685294	16.13918802	2.079188	15.6313613	1.571361
Nov-17	14.64	16.74529412	2.105294	16.13918802	1.499188	15.6313613	0.991361
Dec-17	● 25	16.74529412	8.254706	16.13918802	8.860812	15.6313613	9.368639
Jan-18	17.88	16.74529412	1.134706	16.13918802	1.740812	15.6313613	2.248639
Feb-18	15.49	16.74529412	1.255294	16.13918802	0.649188	15.6313613	0.141361
Mar-18	18.61	16.74529412	1.864706	16.13918802	2.470812	15.6313613	2.978639
Apr-18	11.48	16.74529412	5.265294	16.13918802	4.659188	15.6313613	4.151361
May-18	12.58	16.74529412	4.165294	16.13918802	3.559188	15.6313613	3.051361
		Average-all-errors:	3.737993		3.631033		3.595374

Small errors in predictions...

Measures of spread: these are ways of summarizing a group of data by describing how spread out the scores are.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Standard deviation

Variance

Range

CV

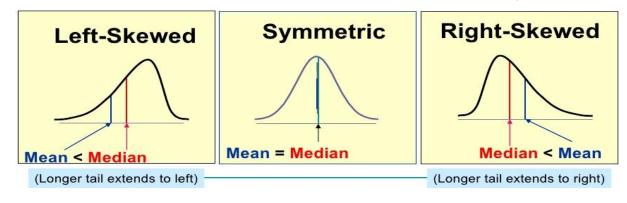
Later in Excel...and Real Stat Add-Ins

The coefficient of variation (CV) represents the ratio of the standard deviation to the mean, and it is a useful statistic for comparing the degree of variation from one data series to another, even if the means are drastically different from each other.

Useful in risk analysis...

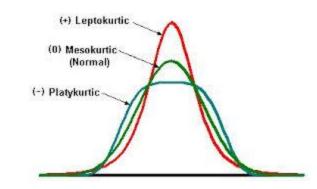
Supplier 1(Kgs) vs Supplier 2 (units)

Skewness: distribution (aggregations of observations) can be spread around both sides of the central tendency.



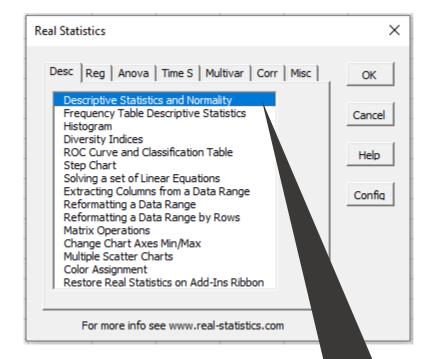
Measures of Distribution

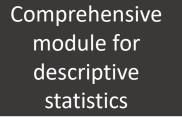
Kurtosis: is the measure of the peak of a distribution, and indicates how high is around the mean.



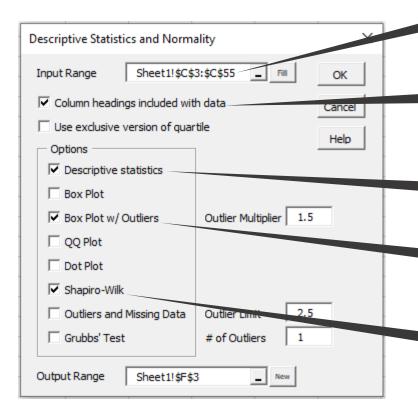
Patients arrivals

Analyzing the weekly patient arrivals...





Week	Patients arrivals
1	101
2	112
3	89
4	105
5	92
6	81
7	105
8	104
9	138
10	109
11	97
12	110
13	115
14	127
15	107
16	90
17	86
18	110
19	99
20	75
21	112
22	98
23	91
24	64
25	98
26	113
27	114
28	151
29	102
30	109
31	114
32	82
33	94
34	93
35	90
36	98
37	82
38	110
39	121
40	107
41	110
42	102
43	119
44	111
45	105
46	103
47	113
48	86
49	107
50	91
51	90
52	81



Data array...

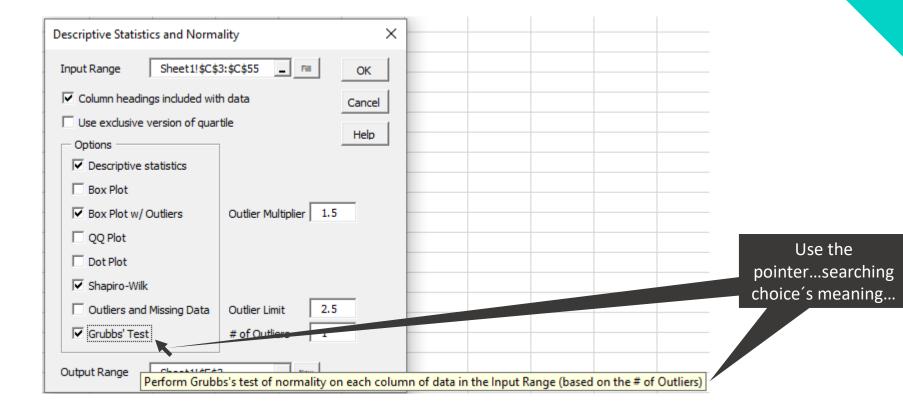
Include the cell "patient arrivals"

All descriptive statistics...

Box Plot depicting the outliers

Another Normality-test...

Week	Patients arrivals
1	101
2	112
3	89
4	105
5	92
6	81
7	105
8	104
9	138
10	109
11	97
12	110
13	115
14	127
15	107
16	90
17	86
18	110
19	99
20	75
21	112
22	98
23	91
24	64
25	98
26	113
27	114
28	151
29	102
30	109
31	114
32	82
33	94
34	93
35	90
36	98
37	82
38	110
39	121
40	107
41	110
42	102
43	119
44	111
45	105
46	103
47	113
48	86
49	107
50	91
51	90
52	81



Descriptive Statistics	
	Patients arrivals
Mean	102.1730769
Standard Error	2.122692368
Median	103.5
Mode	110
Standard Deviation	15.30695235
Sample Variance	234.3027903
Kurtosis	1.534557486
Skewness	0.397113782
Range	87
Maximum	151
Minimum	64
Sum	5313
Count	52
Geometric Mean	101.0481308
Harmonic Mean	99.90476696
AAD	11.62795858
MAD	9.5

19.25

102 patients arrive...on average

$$SE = \frac{S}{\sqrt{n}}$$
 \$\forall \text{(data better distributed)}\$

The most repeated value

A little high...

IQR

Symmetric

respect to the

mean

Descriptive Statistics	
	Patients arrivals
Mean	102.1730769
Standard Error	2.122692368
Median	103.5
Mode	110
Standard Deviation	15.30695235
Sample Variance	234.3027903
Kurtosis	1.534557486
Skewness	0.397113782
Range	87
Maximum	151
Minimum	64
Sum	5313
Count	52
Geometric Mean	101.0481308
Harmonic Mean	99.90476696
AAD	11.62795858
MAD	9.5
IQR	19.25

Average of the Absolute Deviation...

$$AAD = \frac{1}{n} \sum |x_i - \bar{x}|$$

Descriptive Statistics	
	Patients arrivals
Mean	102.1730769
Standard Error	2.122692368
Median	103.5
Mode	110
Standard Deviation	15.30695235
Sample Variance	234.3027903
Kurtosis	1.534557486
Skewness	0.397113782
Range	87
Maximum	151
Minimum	64
Sum	5313
Count	52
Geometric Mean	101.0481308
Harmonic Mean	99.90476696
AAD	11.62795858
MAD	9.5
IQR	19.25

Median Absolute Deviation...

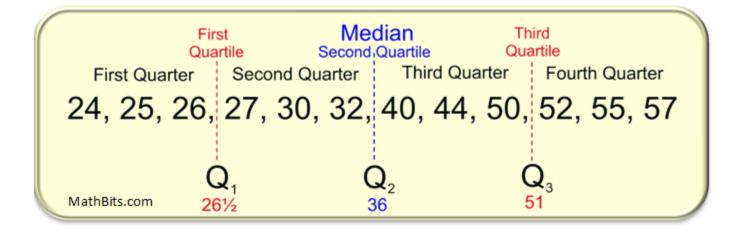
Median $\{|x_i - \tilde{x}| : x_i \text{ in } S\}$

where \tilde{x} = median of the data elements in S.

Descriptive Statistics	
	Patients arrivals
Mean	102.1730769
Standard Error	2.122692368
Median	103.5
Mode	110
Standard Deviation	15.30695235
Sample Variance	234.3027903
Kurtosis	1.534557486
Skewness	0.397113782
Range	87
Maximum	151
Minimum	64
Sum	5313
Count	52
Geometric Mean	101.0481308
Harmonic Mean	99.90476696
AAD	11.62795858
MAD	9.5
IQR	19.25

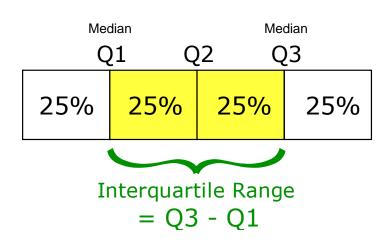
Inter-quartile Range...

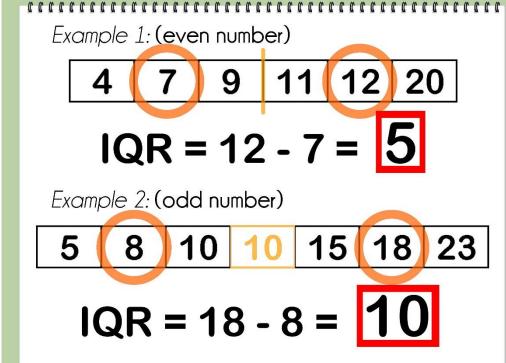
Inter-quartile Range...



Sorting data ----

Inter-quartile Range...

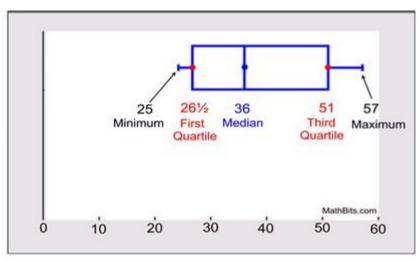


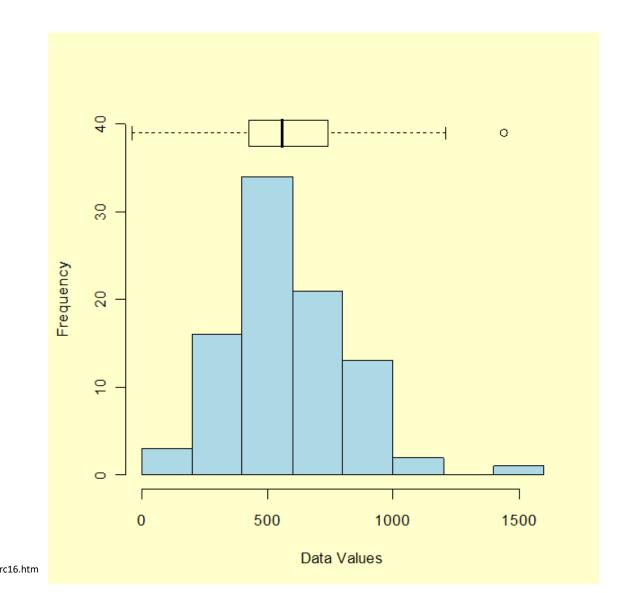


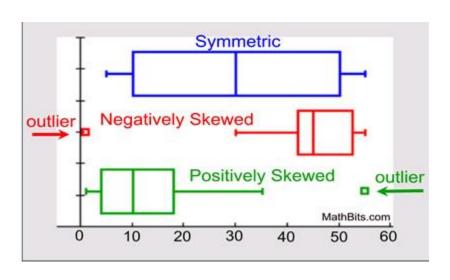
Outliers are:

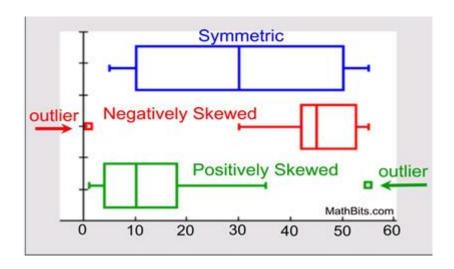
greater than $Q_3 + (1.5 \cdot IQR)$ (referred to as the upper fence) or less than $Q_1 - (1.5 \cdot IQR)$ (referred to as the lower fence)

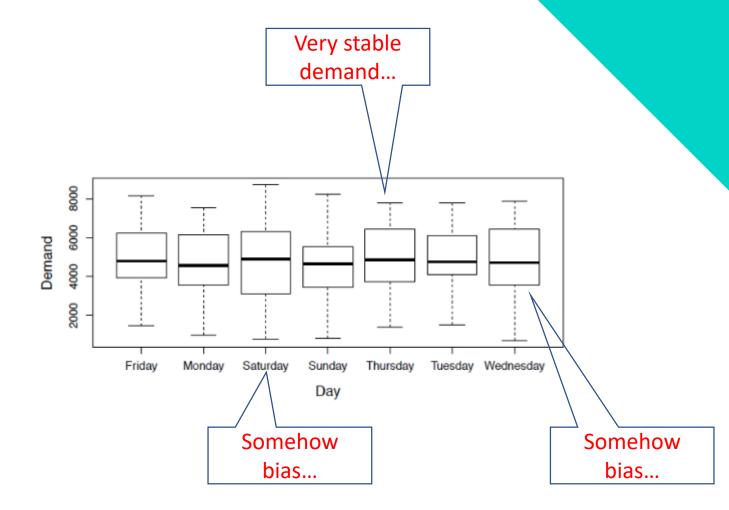
Box plot



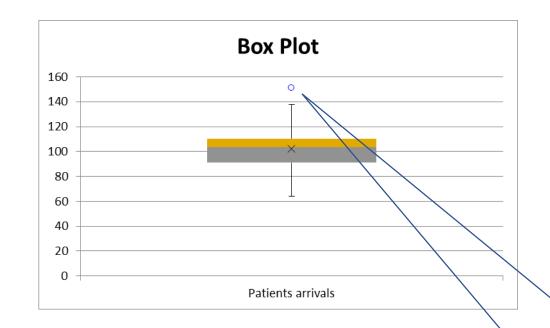




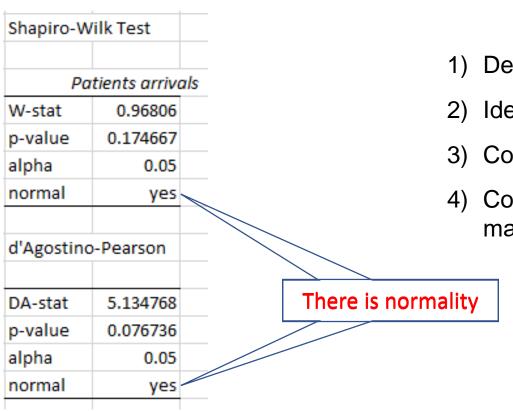




Multiplier	1.5	
Pa	tients arrivo	als
Min	64	
Q1-Min	27	
Med-Q1	12.5	
Q3-Med	6.75	
Max-Q3	27.75	
Mean	102.1731	
Min	64	
Q1	91	
Median	103.5	
Q3	110.25	
Max	138	
Mean	102.1731	
Grand Min	0	
Outliers	151	_



One outlier...the data could be removed from the dataset



- 1) Define the hypothesis
- 2) Identify the proper statistical test
- 3) Compute the p-value
- 4) Compare p-value against an "acceptable significance value(α)"...then make a decision...

If p-value $\leq \alpha$ Then

the null hypothesis is ruled out, and the alternative hypothesis is valid.

Else

The null hypothesis is valid

HO: The data follow a Normal Distribution

H1: The data do not follow a Normal Distribution

Descriptive-Stats in R...

